Polariton Panorama

D.N. Basov1, A. Asenjo-Garcia1, P.J. Schuck2, X.Y. Zhu3, Angel Rubio4,5

1.Department of Physics, Columbia University, New York, NY 10027, USA.

 2.Department of Mechanical Engineering, Columbia University, New York, NY, USA

3.Department of Chemistry, Columbia University, New York, NY 10027, USA.

4.Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany

5.Center for Computational Quantum Physics (CCQ), Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, USA

Abstract: In this brief review, we summarize and elaborate on some of the nomenclature of polaritonic phenomena and systems as they appear in the literature on quantum materials and quantum optics. This summary includes at least sixty different types of polaritonic light-matter dressing effects unraveling a broad panorama of the physics and technology of polaritons.

Polaritons are commonly described as light-matter hybrid quasiparticles. Polaritons inherit their attributes from both their light and matter constituents. More rigorously, a polariton is a quantum mechanical superposition of a photon with a matter excitation, the latter being a collective mode in solids and superconducting circuits or an electron in atoms, molecules or even superconducting qubits. As such, the notion of polaritons is a unifying universal concept between the fields of quantum materials and quantum optics/electrodynamics. Until fairly recently, these subfields of contemporary physics evolved largely independently of each other. Among the unintended consequences of these divisions is the ambiguity in polaritonic terminology with the same terms used markedly differently in quantum materials (QM) and cavity quantum electrodynamics (QED) in atomic systems. Here, we attempt to summarize (in alphabetical order) some of the polaritonic nomenclature in the two subfields. We hope this summary will help readers to navigate through the vast literature in both of these fields (Refs.1517). Apart from its utilitarian role, this summary presents a broad panorama of the physics and technology of polaritons transcending the specifics of particular polaritonic platforms (Boxes 12). We invite readers to consult with reviews covering many important aspects of the physics of polaritons in quantum materials [1, 2, 3], atomic and molecular systems [4] and in circuit QED [5, 6] as well as general reviews of the closely related topic of strong light-matter interaction [7, 8, 9, 10, 11, 12].

Reference: D.N. Basov, A. Asenjo-Garcia, P.J. Schuck, X.Y. Zhu, and Angel Rubio “Polaritons Panorama” Nanophotonics 10, 549 (2021).

Box 1 - Cavity quantum electrodynamics and cavity polaritons

Box 1: Cavity quantum electrodynamics and cavity polaritons. In cavity quantum electrodynamics (QED), the spontaneous emission of atoms, molecules and solids is governed not only by the properties of the emitter per se but is also controlled by its local electromagnetic environment. Optical cavities assembled from two parallel mirrors have long been used to confine light, to enhance light-matter interaction and to promote lasing [19]The probability of interaction between light and matter is enhanced by the number of bounces the photon makes between the mirrors before leaving the cavity, which is conventionally quantified by the cavity finesse F. Cavities with high quality factors promote extremely efficient light matter couplings. In the strong-coupling regime (where the coherent interactions between the matter excitation and the cavity mode overcome the dissipation, i.e., when the vacuum Rabi splitting is much larger than the linewidth), the atomic or material excitation hybridizes with the photonic mode and produces a cavity polariton. The minimum separation upper polariton branch and lower polariton branch EUPB −ELPB in Panel H is commonly referred to the normal-mode splitting in analogy to the Rabi splitting of a single-atom cavity system [20](also Fig.4). Rabi splitting can reach fractions of eV in quantum materials and can exceed 1 eV in molecules [21, 22]. Strong coupling leads to photon blockade, where the presence of a photon in a cavity blocks a second one from coming in the study by Tian and Carmichael [23] and Imamoğlu et al.[24]. See also microcavity polaritons.

Figure 1 - Collective modes of a 2D superconductor

Figure 1: Schematic representation in the frequency–momentum plane of the collective modes that may appear in the electrodynamical response of a two-dimensional (2D) superconductor. The blue area shows the low-energy and long-wavelength region, where weakly damped collective modes may be observed. Anticrossing between the plasmon and Higgs mode and the Bardasis–Schrieffer (BaSh) mode is not shown here. Here, c is the speed of light, vF is the Fermi velocity, and Df is the normal-state diffusion coefficient. Adapted from a study by Sun et al. [13].


Box 2 - Panorama of cavities and cavity modes

Box 2. Panorama of cavities and cavity modes. A common Fabry-Perot cavity (Panel A) formed by two parallel mirrors supports linear modes and maintains time-reversal symmetry. Cavities employing chiral meta-surfaces support helical modes (Panel B). A possible realization of time-reversal symmetry-breaking is offered by the use of Faraday mirrors in panel (Panel C). Ring mode cavities (Panel D) sustain running waves of a chosen circular polarization and break time reversal symmetry by means of a handedness filter realizable with a combination of a Faraday rotator and polarization optics. Advanced cavities are well suited for the exploration of the physics of spin vortices and skyrmion spin textures in exciton-polariton condensates originating from the optical spin Hall effect[42, 43]. Panels A-D from Ref.[44]. Panel E: multi-mode cavity QED enabling local light-matter coupling. The schematic displays two 87Rb Bose-Einstein condensates trapped at locations x1 and x2 on opposite sides of the cavity center[45].  Panel F: schematic of a strongly interacting polaritonic quantum dot formed by 150 Rydberg-dressed Rubidium in a single-mode optical resonator[46]. BS: beamsplitter; D1, D2: single-photon detectors.

Figure 2 - Charged exciton-polaritons

Figure 2: Charged exciton-polaritons. Panels A: Two quantum wells, labeled with the indicies σ = 1, 2 and separated by a distance d, form an electron-hole bilayer in the extremely imbalanced limit. The minority species belongs to the σ = 2 layer, while the majority species at σ = 1 forms an interacting Fermi sea. Uq and Vq are, respectively, intra- and interspecies Coulomb interactions. The bilayer is located inside a planar cavity that confines the cavity photon mode C. The (blue) shaded area represents the finite-size external laser pump spot. Panel B: The same setup in a single quantum-well geometry. Here, the majority σ = 1 and minority σ = 2 species belong to the same well. Panels C and D:  the particle-hole excitation process via a photon without and with) a Fermi sea, respectively. All photon-mediated transitions are approximately vertical in a cavity. Adapted from Ref.[73].

Figure 3 - Interior and edge polaritons in van der Waals quantum materials

Figure 3: Interior and edge polaritons in van der Waals quantum materials. Panel A: charge transfer plasmon polaritons at the interface of graphene and a-RuCl3 visualized by means of nanoinfrared methods (ω= 898 cm−1 , T = 60 K). Three types of plasmonic fringes are observed: (i) edge plasmon polaritons (dark spots at along the physical boundary of graphene crystal), (ii) interior plasmon polaritons (oscillating wave pattern emanating from the boundary of graphene on the left), and (iii) defect-launched plasmon polaritons forming circular patterns in the interior of the sample. Adapted from a study by Rizzo et al. [68]. Panels B– D: nano-IR imaging of edge plasmons on graphene nanoribbons. White dashed lines mark the boundaries of the crosscut GNR. Adapted from a study by Fei et al. [126]. Panel E: nanoinfrared image of edge plasmons in a square sample of graphene. Adapted from a study by Nikitin et al. [128]. Panels F: nanoinfrared images of edge phonon polaritons in the 25-nm-thick slab of hBN. Adapted from a study by Dai et al. [114]. Panel G: edge and interior phonon polaritons in a 40-nm-thick slab of hBN [127].

Figure 4 - Cavity Exciton Polaritons

Figure 4: Cavity exciton polaritons. Panel A: polaritons (pink spheres with blue halo) emerge from strong coupling between the excitonic resonance in a quantum well (transparent sheet) and the photonic mode of a GaAs/AlGaAs microcavity. THz probing (blue curve) maps out the matter component of the polaritons, while photoluminesce (PL, red arrows) leaking through a Bragg mirror reveals the photonic component. Panel B: normal-mode splitting. The heavy hole 1s exciton resonance (dashed curve) and the photonic mode (dotted curve) are replaced by the upper polariton branch and lower polariton branch (UPB and LPB, respectively; solid curves). PL (thick red arrow) originates from the radiative decay of polaritons at small in-plane momenta k||. Panel C: THz absorption probes hydrogen-like intraexcitonic transitions. While the 1s state is spectrally shifted by strong light–matter coupling, the optically dark 2p exciton is not affected by the cavity. The resulting momentum dependence of the THz transition energy allows us to map out the momentum distribution of the polaritons as they relax toward k|| = 0 (green dotted arrow). From a study by Menard et al. [174]. Panel D: schematic of the valley ´ exciton polariton phenomena. The solid (gray) curves indicate LPB and UPB. The bare cavity and the exciton dispersion are shown by the black and orange dashed curves, respectively. Pump 1 is used to excite directly the exciton reservoir, whereas pump 2 excites the lower polariton branch at specific k|| and ω. The emission is collected at smaller angles. The top inset shows the valley polarization phenomena in 2D transition metal dichalcogenide (TMDC) semiconductors caused by the broken inversion symmetry. In these materials, the K and K′ points correspond to the band edges separated in momentum space but energetically degenerate. The bottom inset is a schematic of the microcavity structure with silver and a SiO2 cavity layer embedded with prototypical TMDC materials WS2. From a study by Sun et al. [175].

Figure 5 - Phonon Polaritons

Figure 5: Phonon polaritons, hybrid plasmon–phonon polaritons, and image polaritons. Panel A: dispersion of phonon polaritons in ionic crystals predicted by Huang (in a study by Sun et al. [175]. In the original publication, Huang did not use the term polariton. Panel B: calculated dispersion of the hyperbolic phonon polaritons in hBN (HP2). Panel C: calculated dispersion of the hyperbolic phonon polaritons in h-BN coupled to plasmon polaritons in the graphene layer and forming hyperbolic plasmon–phonon polaritons (HP3) and surface plasmon–phonon polaritons (SP3). Adapted from a study by Bezares et al. [212]. Panel D: concept of image polaritons at the interface of hBN and a metal. From a study by Yoo et al. [36].

Figure 6 - Moire Polaritons

Figure 6. Moire polaritons and topological phonon polaritons in twisted van der Waals materials. Panel A: atomic force friction image of the graphene/hBN structure at the boundary between the moiré-superlattice and plain graphene (marked in Panel B). Moire reconstruction leads to a periodic pattern with the periodicity of 14 nm. Scale bar 1 mm. Panel B: nano-infrared image of the graphene/hBN structure. Darker contrast occurs in the moire region. The analysis of plasmon polariton fringes along the boundary between moire superlattice and plain graphene allows one to reconstruct the gross feature of the altered electronic structure in the moire superlattice region. Adapted from Ref.[255]. Panel C: Nano-infrared image of plasmon polaritons interference patterns in a moiré superlattice formed by twisted layers of graphene. The dashed hexagons represent the boundaries of a single unit cell. From Ref.[308]. Panel D: Plasmon polariton superposition model, which accounts for the gross features of the image in C. Panel E: Schematic of the nano-IR imaging showing an AFM tip illuminated by a focused IR beam. Panel F: nano-infrared image of moire suprlattice pattern in hBN. The contrast is formed by the shift and broadening of the phonon polariton resonance. Adapted from Ref.[[309]]. Panel G: nano-infrared image of phonon polaritons in a twisted structure of MoO3 slabs rotated by q =200, revealing complex wavefront geometry. Ref.[[310]].  Panel H: topological phonon polaritons in twisted MoO3 slabs rotated by q =770. From Ref.[[311]].


Figure 7 - Ultra-fast plasmonic effects in van der Waals materials

Ultra-fast plasmonic effects in van der Waals materials. Panel A: nano-infrared spectroscopy and imaging of switchable plasmon polaritons in black phosphorous (bP) semiconductor. Left: experimental schematics. Middle: Band structure of bP. Orange arrows indicate electron-hole pairs excited by a near-infrared pulse centered at a wavelength of 1,560 nm. The curved black arrows indicate carrier cooling towards the band extrema. Right: Ultrafast pump–probe dynamics of the scattered near-field intensity normalized to the signal at the negative delay time (equilibrium). The SiO2 substrate (blue points) shows no dynamics, whereas the SiO2/bP/SiO2 heterostructure (black points) features a strong pump–probe signal. Adapted from a study by Eisele et al.[362]. Panel B:  Methods for controlling plasmons in van der Waals materials and the corresponding timescales. Static and persistent tuning methods are displayed in the blue boxes; dynamical control methods are displayed in the orange ones. The yellow boxes show the dephasing times (τ) of plasmons and magneto-plasmons in van der Waals materials along with characteristic timescales of electron tunnelling in these systems. The green boxes represent timescales pertinent for various photonics technologies. The box with the dashed green outline indicates the desired timescales for future ultrafast plasmonic circuits. NEMS: nanoelectromechanical systems; G: graphene. Adapted from a study by Basov et al. [385].


Figure 8 - Tip enhanced spectroscopy of plexcitons

 Figure 8: Tip-enhanced spectroscopy of plexcitons. Panel A: the strongly confined ∣Ez∣ field in a plasmonic nanogap cavity surrounding a single isolated CdSe/ZnS quantum dot (QD) and a tilted Au tip induce coupling between the plasmon and exciton. Panels B: Measured PL spectra for the QD, cavity plasmon polariton, weakly coupled system (WC) and strongly coupled states (SC) with coupling strength g = 141 meV. A Lorentzian lineshape representing the redshifted plasmon resonance in the presence of the QD is calculated from the fitted values (SPPQD) [398].

Figure 9 - Infrared nano-imaging of polaritonic waves

Figure 9: Infrared nanoimaging of polaritonic waves. Panel A: nano-IR image of the interference pattern of surface phonon polaritons on a SiC launched by circular Au discs [331]. Panel B: prediction of inplane negative refraction between plasmon polaritons in graphene and phonon polaritons in an hBN slab [455]. Panel C: nano-IR imaging of polariton evolution and canalization in an hBN metasurface [248]. Panel D: optical images of the laser-written metalense (bottom). Nano-IR image of revealing focusing of phonon polaritons at 1452 cm−1 [456]. Panel E: refraction of graphene plasmon polaritons at the prism formed by bilayer graphene [457].

Figure 10 - Exciton Polaritons

Figure 10: Panel A: schematic of MoS2/WSe2 heterobilayer nanolaser integrated in photonic crystal cavity [402]. Panel B: polaron–polaritons in TMDC semiconductors. Schematic to illustrate the conduction and valence band structure and optical selection rules of monolayer MoSe2 close to the K and K′ points. An exciton in the K valley interacts with conduction band electron–hole pairs in the Fermi sea of the K′ valley to form an intervalley polaron. From a study by Bing Tan et al. [468] Panel C: experimental setup for the exploration of propagating solitons in the system of microcavity exciton polaritons [469].

Figure 11 - Polariton waveguide QED


Figure 11. Polariton waveguide QED. Panel A: Emergence of bound atom-photon dressed states in 1D waveguides with finite bandwidth. The slow-light waveguide can be modeled as a large array of coupled optical resonators with nearest-neighbor coupling J. Lower left: band structure of the waveguide without atoms. Lower right: single-photon spectrum as a function of the atom-photon coupling g in the case of a single atom (with ωa = ωc) coupled to the waveguide, showing the emergence of bound states. Reproduced from a study by Calajo et al. [503]. Panel B: Photonic crystal for phonon-polaritons in LaTaO3. Top left: optical microscope images of the photonic crystal patterns. Top right: schematic of pump-probe experiments.  Bottom left: Space–time plot of THz waves generated directly inside a square photonic crystal. The edges of the image are the edges of the photonic crystal. Bottom right: Dispersion diagram obtained from a 2D Fourier transform of the space–time plot in bottom left panel. The region highlighted in yellow represents the light cone. The regions highlighted in orange show the locations of the leaky modes.Adapted from a study by Ofori-Okai et al. [504]. Panel C: tunable and switchable photonic crystal for surface plasmon polaritons in graphene. Top: Schematic of a photonic crystal comprised of a graphene monolayer fully-encapsulated by hexagonal boron nitride on top of an array of SiO2 pillars. Pixelated gate insulator implemented in the form of nano-pillars enables the local modulation of the carrier density and therefore of the plasmonic density of states. Bottom left: near-field nano-IR image of plasmonic standing waves for a structure in the top panel. Scale bar 400 nm. Bottom right: Calculated plasmonic band structure as a function of wave-vector k and average carrier density ns. A vertical cut parallel to the ω-k plane (back panel) generates the plasmonic band structure at fixed carrier density ns=5.5×1012 cm2. The dashed lines mark the range of a complete plasmonic bandgap. A horizontal cut parallel to ns-k plane (bottom panel) generates the plasmonic dispersion as a function of average carrier density ns and wave-vector k, at laser frequency ω= 904 cm−1; a complete bandgap is evident for carrier density around ns=5.5×1012 cm2.

Anderson-Higgs polaritons

Anderson-Higgs polaritons [1213]. The matter constituent of these polaritons originates from the Anderson-Higgs amplitude mode in superconductors[14] (Fig.1). Anderson-Higgs polaritons are yet to be experimentally observed.

Bardasis-Schrieffer (BaSh) polaritons

Bardasis-Schrieffer (BaSh) polaritons. The matter constituent of BaSh polaritons is associated with the fluctuations of sub-dominant order parameter in superconductors[15, 16], charge density wave systems [13] and excitonic insulators[17]. This novel theoretical concept still awaits experimental confirmation. The requisite experiments include nano-spectroscopy and nano-imaging of polaritonic dispersion in the terahertz (THz) frequency range below the energy gap of superconductors. These are challenging scanning probe measurements, as they have to be carried out at cryogenic temperatures. Nano-THz imaging at cryogenic temperatures have been recently fulfilled[18] paving the wave to the exploration of polaritonic phenomena in superconductors (see also Cooper pair plasmon polaritons and Josephson plasmon polaritons).

Berreman polaritons

Berreman polaritons:  Phonon polaritons in anisotropic materials and multilayer structures, also referred to as epsilon-near-zero or ENZ polaritons[29 – 31]. ENZ materials, artificial structures and nano-cavities reveal exotic electromagnetic responses with a broad range of technological applications [31 – 35]. For example, ENZ nano-cavities facilitate ultra-strong coupling between plasmonic and phononic modes[36] as well as the so-called photonic doping [37].

Berry plasmon polaritons

Berry plasmon polaritons: chiral plasmonic modes whose dispersion is explicitly impacted by the Berry curvature and anomalous velocity in chiral media[38 – 40]. Berry plasmon polaritons are yet to be experimentally observed.


Bose-Hubbard polaritons

Bose-Hubbard polaritons: cavity QED polaritons with matter component associated with transitions across the Mott gap in the system of interacting atoms[41] (see also Mott polaritons).



Bragg polaritons

Bragg polaritons. Bragg reflectors (Box 1 Panel G, Figs. 2 and 4) are routinely utilized to implement polaritonic cavities. Bragg polaritons pertain to systems in which multiple excitonic layers and/or quantum wells are periodically integrated in a DBR cavity[47, 48] (see also polaritonic lattices). The inherent anisotropy of Bragg multilayer structures may enable hyperbolic electrodynamics[49] (see hyperbolic polaritons).


Cavity polaritons

Cavity (micro-cavity) polaritons. Weisbuch et al. [142] devised and implemented the first semiconductor (micro)cavity device revealing Rabi splitting of exciton polaritons (Boxes 1 and 2). Semiconductor microcavites emerged as a powerful platform for the investigation of strong light-matter interaction in semiconductors[50, 51]. Microcavity structures reveal intriguing phenomena including the polariton parametric amplification[52] and its spontaneous counterpart, the parametric photoluminescence[53]. Parametric photoluminescence is a purely quantum process. An appealing attribute of polariton parametric photoluminescence is that signal-idler polariton pairs are produced in non-classical states with quantum correlations. The quest for Bose-Einstein condensation of microcavity polaritons has produced a stream of breakthrough results[54],55] (see also exciton-polaritons and their condensates). Microcavity exciton-polaritons display quantum effects including entanglement[56] and polariton blockade[57, 58] and may serve as a platform for the implementation of qubits[59].

Channel polaritons

Channel polaritons are supported by materials and structures with a straight channel cut in polaritonic medium[60]. Channel polaritons were utilized for the implementation of waveguide components including interferometers and ring resonators[61]. Polaritons guided along the nano-slit are predicted to form hybrid polaritons giving rise to both bonding and antibonding modes[62].

Charge transfer polaritons

Charge transfer polaritons. The formation of plasmon polaritons in graphene or semiconductors relies on the high carrier density that can be introduced by electrostatic gating[63,64], ferroelectric polarization[65], chemical doping[66] or photo-excitation[67]. Alternatively, the requisite carrier density can be introduced by charge transfer across the interface between proximal materials with dissimilar work functions. Such charge transfer plasmon polaritons have been demonstrated for graphene residing on another van der Waals material RuCl3[68]. Experiments on metallic nano-particles show that charge transmitted between the pair of nano-particles through a conducting pathway leads to a characteristic plasmonic response[69] termed charge transfer plasmons. Interlayer exciton in TMDC heterostructures (e.g. MoSe2/WSe2) also involves charge transfer from one layer to another; the relevant microcavity polaritons[70] are classified as charge transfer exciton polaritons.

Charged polariton

Charged polariton. Charged polaritons posess a non-vanishing electric charge. This interesting concept was introduced in the context of the cavity exciton polaritons in GaAs/AlAs quantum wells that also hosted two-dimensional electron gas with the density ne. Spectroscopic experiments in Ref.71 have identified several distinct properties of charged exciton polaritons, including the scaling of the coupling strength analogous to the properties of atomic QED system[72]. The effective mass of charged polaritons exceeds the band mass of a GaAs quantum well by a factor of 200. Tiene et al. have theoretically demonstrated the unique utility of charged micro-cavity polaritons for exploring the physics of electron-hole systems with charge imbalance, which are difficult to access with alternative experimental methods[73].  They demonstrated how the Fermi sea of excess charges modifies both the exciton properties and the dielectric constant of the cavity medium, which in turn affects the photon component of the many-body polariton ground state (Fig.2). See also the closely related entries of Fermi-edge exciton polaritons and trion polaritons.

Cherenkov polaritons

Cherenkov polaritons. In the Cherenkov effect[74], a charged particle moving with a velocity faster than the phase velocity of light in the medium radiates light. The emitted radiation forms a cone with a half angle determined by the ratio of the two velocities. Genevet et al. demonstrated that by creating a running wave of polarization along a one-dimensional metallic nanostructure consisting of subwavelength-spaced rotated apertures that propagates faster than the surface plasmon polariton phase velocity, one can generate surface plasmon wakes that serve as a two-dimensional analogue of Cherenkov radiation[75]. The Cherenkov physics is also relevant to the properties of phonon polaritons[76, 77]. Infrared nano-imaging experiments reveal Cherenkov phonon polariton wakes emitted by superluminal one-dimensional plasmon polaritons in a silver nanowire on the surface of hexagonal boron nitride[78]. See also Exciton-polariton X-waves on superluminal properties in the system of exciton-polaritons.

Cooper pairs polaritons

Cooper pairs polaritons (in QMs and cold fermionic cavity systems). Cooper pair plasmon polaritons is an inherent attribute of superconductors. The matter component of these polaritons is associated with the superfluid density (Ref. 1). The dispersion of Cooper pairs plasmon polaritons in layered cuprate high-Tc superconductors has been investigated theoretically [13, 79] but is yet to be explored in experiments. Recently, the formalism of the Bardeen Cooper and Schrieffer theory of superconductivity has been applied to describe the quasiparticle excitations of a cold fermion system coupled to a cavity. Depending on the excitation density and atomic interaction, the excited atoms and holes and in the Fermi sea may form bound Cooper pairs strongly coupled with cavity photons.  This latter kind of polaritons were also termed Cooper pair polaritons[80].

Dark polaritons in QM

Dark polaritons in QMs: polaritons characterized by a wavevector that lies beyond the light line. The lower branches of polaritons in many/most QM systems are dark by this criterion and do not couple to free space photons because of the notorious “momentum mismatch” problem (Box 1 F, H, Fig.1).Light coupling to dark polaritons can be can be mediated by nanoscale defects such as a protrusions, divots, or cracks, exploiting the high spatial frequencies inherent to these deeply subwavelength objects. Better controlled strategies can also provide the missing momentum needed for coupling to dark polartons[81]. These include prism and grating coupling, and the use of plasmonic optical nanoantennas[82  89]. Notably, sharp scan-probe tips can act as such antennas [90 – 95] allowing polaritonic waves to be launched and visualized. Scanning probe antenna-based nano-optics has emerged as an indespensible research tool enabling spectroscopy and visualization of polaritons in QMs (Ref.[1,88,96]).


Dark-state polaritons in atomic ensembles

Dark-state polaritons in atomic ensembles: typically, this refers to polaritons in atomic ensembles that propagate in the regime of electromagnetically-induced transparency (EIT) [97 – 100]. The darkness arises from the photon mixing strongly with a collective atomic excitation, resulting in a state with only a minute photonic component. See also EIT polaritons below. In ordered atomic arrays, dark (also often reffered to as subradiant) states emerge due to interference in photon emission and absorption. At the single photon level, these darks states are collective spin excitations with a wave-vector that lies beyond the light line, preventing the coupling with radiation modes (exactly the same phenomenon of “momentum mismatch” described above for QMs) [101104]. Polaritons arising in atomic lattices have applications in quantum information storage and processing[103].


Demons:  or density modes were introduced by David Pines[105], an early protagonist of plasmons research. Demons are particularly relevant to the response of the Dirac fluid in graphene in hydrodynamic regime[106] and adiabatic plasmon amplification[107].

Dirac plasmon polaritons

Dirac plasmon polaritons are formed by hybrids of infrared photons with Dirac electrons in graphene[108, 109, 63, 64]. Direct nano-imaging experiments uncovered extraordinarily long propagation lengths of highly confined Dirac polaritons and have established fundamental limits underlying their decoherence and losses[110].


Dyakonov surface polaritons

Dyakonov surface polaritons:  the surface modes that propagate along the interface between isotropic and uniaxial materials[111 113]. A special case of Dyakonov polaritons is realized in anisotropic crystals of layered van der Waals materials. One example is that of the hyperbolic surface phonon polaritons propagating along the edges of slabs prepared from hexagonal boron nitride[114 116].



Edge magneto-plasmons

Edge magneto-plasmons. Two-dimensional (2D) electron gas subjected to the magnetic field normal to the plane of the 2D conductors reveals two distinct field-dependent resonances: the cyclotron resonance mode with frequency increasing with the magnetic field and another mode that redshifts with the applied field. The latter mode has been linked to the edge plasmons of the charged sheet and can be viewed as the 2D analog of surface plasmons in three dimensional (3D) systems[117]. Specifically, edge magneto-plasmons can propagate along the physical boundary of the 2D conductors[118, 119].  Edge magneto-plasmons constitute a spectacular manifestation of the dynamical Hall effect. Edge magneto-plasmons are chiral. Their chirality is a direct implication of the applied Lorentz force[120]. Graphene reveals rich plasmonic phenomena in the presence of magnetic fields[121125].


Edge plasmon polaritons

Edge plasmon polaritons: one-dimensional plasmonic modes propagating along the physical boundaries of two-dimensional materials (Fig.3). Edge plasmon polaritons reveal an approximately  10 % shorter wavelength compared to the interior of the plasmonic medium[128]. Qualitatively, the shorter wavelength can be ascribed to the effective reduction of the Drude weight since free carriers exist only on one side of the physical boundary. Dyakonov hyperbolic phonon-polaritons are a lattice analog of edge plasmon polaritons. Berini reported on an in-depth numerical analysis of edge and corner plasmon-polariton modes in thin conducting slabs[129].


Whispering-galley polaritons

Whispering-galley polaritons is a special example of an edge polaritons that loops around the ridge of polartonic medium[130] or along the cirumfrance of nano-holes[131, 132].

EIT in nanoplasmonic structures

EIT in nanoplasmonic structures [133, 134], EIT with plasmon polaritons in graphene [135, 136] and EIT with exciton polaritons in microcavities [137].

EIT polaritons propagate

EIT polaritons propagate in atomic systems under conditions of electromagnetically induced transparency (EIT). A remarkable aspect of EIT polaritons is that they can be slowed down to 10-s of meters per second[176] or even brought to a standstill [177,178]. EIT polaritons can be dark (decoupled from radiation, more “atom-like”) or bright (coupled to radiation, more “photon-like”). The darkness/brightness of the polaritons is controlled by an external laser beam. EIT polaritons can be strongly interacting, if coupled to Rydberg states (see Rydberg polaritons below). The EIT phenomenon is also observed in materials and nanostructures.


ENZ Polaritons

ENZ polaritons: epsilon near zero or ENZ polaritons are equivalent to Berreman polaritons above.


Exciton-polaritons and their condensates

Exciton-polaritons and their condensates.  Exciton-polaritons are bosonic quasiparticles originating from photons hybridized with hydrogen-like bound electron-hole pairs. Semiconductor microcavities (Box 1 and Fig. 4A) offer an outstanding platform for the investigateion of exciton polaritons and the attendant strong light-matter coupling. Provided a high-quality microcavity is nearly resonant with an excitonic transition, trapped photons may be emitted and reabsorbed multiple times before being lost to dissipation or cavity leakage. Absorption and re-emission of photons in the cavity gives rise to light-matter mixed eigenstates[138].  When sufficiently long-lived, exciton-polaritons may form coherent quantum states[139145]. Bose Einstein condensates (BEC) of exciton polaritons are appealing quantum liquids in part because their coherent state is created and controlled by light [146148]. The binding energies of excitons in organic molecules[149], transition metal dichalcogenides and lead halide perovskites can be as high as 0.75 eV [150158] these extraordinary high binding energies underlie the theoretical predictions of condensation and superfluidity at T=300 K [159161]. BECs of exciton polaritons were predicted to form spatially and temporarily ordered states: time crystals[162]. Exciton-polariton condensates may also enable energy-efficient lasers[163].


Exciton-polariton X-waves

Exciton-polariton X-waves: wavepackets of exciton-polartons that sustain their shape without spreading, even in the linear regime. In Ref.[164]. self-generation of an X-wave out of a Gaussian excitation spot is obtained via a weakly nonlinear asymmetric process with respect to two directions of the nonparabolic polariton dispersion. Notably, X-waves were found to propage with supluminal peak speed with respect to the group velocity of the polaritonic system.


Fermi edge exciton polaritons

Fermi edge exciton polaritons [165166] are observed in microcavities where the active semiconductor is heavily doped to form the Fermi edge. Fermi edge exciton polaritons are formed of electron hole pair excitations involving electron and hole states with in-plane wave vectors around the Fermi edge: kIIe=kIIh~kF where kF is the Fermi wavevector. In some litrature this latter form of polaritonic states are reffered to Mahan exciton polaritons [167] recognizing a prediction of excitonic bound states in doped semiconductors beyond the critical density of the insulator to metal transition states by G. Mahan [168169]. See also Quantum Hall polaritons below.

Floquet polaritons

Floquet polaritons. The concept of Floquet engineering refers to the control of a system using a time-periodic optical field and is being broadly applied in atomic physics as well as in the field of quantum materials[170]. The notion of Floquet polaritons pertains to polaritons in a system of Floquet-engineered atomic states[171] or electronic states in solids[172]. The concept of Floquet engineering by time-period optical fields has been extended to coherent phonons in quantum materials[173]. Chiral Floquet polaritons are predicted [44] to form in chiral cavities in which fundamental matter symmetries are broken (Box 2).

Frenkel exciton polaritons

Frenkel exciton polaritons. The matter constituent of these polaritons originates from Frenkel excitons characterized by the Bohr radii of the same order as the size of the unit cell. Frenkel exciton polaritons are common in organic semiconductors[179]. The high exciton binding energy (~eV) and large oscillator strength may lead to room temperature exciton-polariton condensates [180182].

Fuchs-Kliewer interface polaritons

Fuchs-Kliewer interface polaritons: phonon polaritons occurring at surfaces and interfaces[183] with the matter part originating from Fuchs-Kliewer surface phonons[184]. Huber et al.[185] employed nano-infrared methods to visualize propagating Fuchs-Kliewer surface phonon polaritons in SiC. Surface phonon polaritons are observed in insulating and semiconducting materials including hBN [97, 98] and SiC [186189]  GaAs [190], and many others.

Helical plasmon polaritons

Helical plasmon polaritons: were predicted to form in topologically nontrivial Weyl semimetals[191]. Plasmon polariton dispersion may enable the detection of a chiral anomaly:  a charge imbalance between the Weyl nodes in the presence of electric and magnetic fields[192]. The Fermi surface of Weyl semimental features open disjoint segments – the Fermi arcs – associated with the topolical surface states. The resulting Fermi arc plasmon polaritons are predicted to be chiral and to reveal unidirectional propagation[193].  Helical plasmon terminology was also applied to describe one-dimensional plasmon polaritons associated with the helical state in domain walls of topologically nontrivial conductors including anomalous quantum Hall systems[194]. Helicity-dependence of plasmon polaritons is discussed in the context of unidirectional propagation in plasmonic meta-structures controlled by the circular polarization of light[195, 196].

Hopfield polaritons

Hopfield polaritons: a bold theoretical concept of light-matter hybridization proposed by John Hopfield in his doctoral thesis back in 1958 (Ref.[[197]). Hopfield also co-authored the first experimental paper on polaritons devoted to the study of phonon polariton dispersion in GaP by means of Raman scattering[198]. Other early contributions to the theory of polaritons (short of introducing this term) were made by Fano[199], Huang[200] and Tolpygo[201].

Hybrid polaritons

Hybrid polaritons. Different types of polaritons hosted by the same material are prone to hybridization[202]. For example, intersubband polaritons and phonon polaritons hybridize in semiconductor quantum wells[203 – 205]. Hybridization can also occur in multi-layered structures. In all-dielectric layered structures phonon polaritons associated with the neighboring layers couple to form hybrid modes [87, 206207]  Semiconductor heterostructures[208209] and especially Van der Waals heterostructures offer a fertile platform for the implementation of hybrid polaritons[210, 211]. One such example (Fig.5 B,C) is graphene surrounded by insulating layers of hexagonal boron nitride hBN or silicon dioxide. Plasmons associated with graphene layers hybridize with phonon polaritons in proximal SiO2 or hBN layers to form plasmon-phonon polaritons[212, 21363,64]. Hybrid polaritons at the interface of graphene with high-Tc superconductors were proposed as a tool to probe Anderson-Higgs electrodynamics[214]. Hybrid polariton at the interface of graphene with a charge density wave materials were theoretically proposed to “melt” the density wave order [215]. Hybrid modes produced by plasmons in graphene and molecular vibrations of absorbates on the graphene surface may enable high-selectivity sensing mechanisms[216217]. A special case of hybrid modes is hybrid longitudinal-transverse phonon polaritons[218]. Polaritonic heterostructures with phase change materials enable persistent switching of polaritonic response under thermal and optical stimuli[219].

Hyperbolic polaritons

Hyperbolic polaritons. Anisotropic media are predicted to support an interesting class of polaritonic light-matter modes referred to as “hyperbolic” because their iso-frequency surface is a hyperboloid [213, 220 – 227] These modes exist over a range of frequencies where the in-plane permittivity and the out-of-plane (c-axis) permittivity are of the opposite sign. Hyperbolic electrodynamics and hyperbolic polaritons can originate from a variety of physical processes including phonons[219, 223, 228 – 237] inter-subband transitions in quantum wells [238 – 240] plasmons [220226, 241 – 244] excitons [245] and Cooper pairs (see Cooper pair polaritons). Hyperbolic polaritons dramatically enhance the local photonic density of states and are predicted to give rise to strong nonlinearities[246]. Hyperbolic polaritons enable canalization imaging[247] with image effectively transferred by high-momentum sub-diffractional polaritonic rays from back to front surface of the polaritonic medium [248 – 251].


Image Polaritons

Image polaritons: virtual polariton modes produced by image charges at the interface of a polaritonic medium and a metal. Lee et al. have experimentally demonstrated low loss response of image polaritons at the interface of hBN separated with a thin spacer from a metallic substrate[252] (Fig.5D).


Interband Polaritons

Interband polaritons. The matter constituent of these polaritons originates from contributions of the optical response associated with transitions across the energy gap in the electronic spectrum of a material. These include transitions across the energy gap in semiconductors[253] and superconductors or transitions involving mini-bands/flat-bands in moire superlattices of van der Waals materials[254 – 257](see also Moire polaritons). The frequency dependence of s2(w)xw, where s2(w) is the imaginary part of the complex conductivity, is informative for the analysis of interband polaritons [255,258]. Spectra of s2(w)xw reveal a series of steps separated by plateaus, with each step uncovering the energy scale associated with separate interband  contributions. In the limit of w 0, the product s2(w)xw quantifies the spectral weight of intraband processes to the plasmon polaritons. Interband effects play a central role in theoretical proposals for the implementation of population inversion[259], gain and superluminal plasmon polaritons[260].


Intersubband Polaritons

Intersubband polaritons. Dini et al. reported the first experimental observation of the vacuum-field Rabi splitting of an intersubband transition inside a planar microcavity hosting two-dimensional electron gas[261, 262]. Nonlinearities associated with intesubband transitions in semiconductors can be dramatically enhanced by in hybrid structure with plasmonic metasurfaces[263] (see also hybrid polaritons).

Josephson Plasmon Polariton

Josephson plasmon polariton: an inherent attribute of strongly anisotropic layered superconductors. The matter constituent of Josephson plasmon polaritons originates from interlayer Josephson plasmon in layered superconducting materials such as cuprates [79, 264][Stinson-JPR}. Josephson plasmons are the electromagnetic signature of three-dimensional superconductivity in highly anisotropic layered high-Tc superconductors[265]. Josephson plasma waves can be parametrically amplified under illumination with pulsed THz fields[266] paving the way for active Josephson polaritonics.

Kane Polaritons

Kane polaritons: surface plasmon polaritons formed with Kane quasiparticles. Kane polaritons were recently observed in pump-probe experiments on narrow gap II-VI semiconductors[267].


Landau Polaritons

Landau polaritons. The matter component of Landau polaritons originates from cyclotron resonances and transitions between quantized Landau levels relevant in low-dimensional electron gases subjected to high magnetic fields[268,269] . See also magneto-plasmon polariton.


Luttinger Liquid Polaritons

Luttinger liquid polaritons: plasmon polaritons in one-dimensional conductors recently revealed by infrared nano-imaging of single- and multiple-wall carbon nanotubes[270]. Interacting electrons confined in one dimension are generally described by the Luttinger liquid formalism[271,272].  Anomalous dependence of the plasmonic quality factor on gate voltage was interpreted in terms of plasmon-plasmon interaction in carbon nano-tubes[273].

Magnon Polaritons

Magnon polaritons. The matter constituent of these polaritons originate from antiferromagnetic[274, 275] and ferromagnetic resonances. In weak magnetic fields surface magnon polaritons are predicted to acquire non-reciprocal properties. Macedo and Camley analyzed the propagation of surface magnon polaritons in anisotropic antiferromagnets[276]. Sloan et al. predicted that surface magnon polaritons will strongly enhance the spin relaxation of quantum emitters in the proximity of antiferromagnetic materials such as MnF2 or FeF2 (Ref.[[277]).  Kruk et al. developed artificial structures with hyperbolic magnetic response with principal components of the magnetic permeability tensor having the opposite signs[278]. Magnetic materials also support hybrid polaritons, including hybrid magnon-phonon polaritons recently observed in ErFeO3/LiNbO3 multilayers[279].


Magneto-Plasmon Polaritons

Magneto-plasmon polaritons: coupled modes of magneto-plasmons and THz/infrared photons[280,281]. Theoretically predicted unconventional properties of magneto-polaritons in Weyl semi-metals include hyperbolic dispersion and photonic stop bands[282]. The nano-infrared imaging and visualization of magneto-plasmon polaritons remains an unresolved experimental challenge. Once technical obstacles are circumvented, it may become possible to directly explore both the focusing and the non-reciprocity predicted for magneto-plasmon polaritons[283]. Plasmonic system driven by intense a.c. field is predicted to reveal spontaneous summetry breaking and non-linear magnetism[284].



Microcavity Polaritons

Microcavity polaritons: see cavity polaritons.

Moire Polaritons

Moire polaritons. Atomic layers comprising van der Waals materials can be re-assembled into heterostructures with nearly perfect interfaces[285 – 287] . A unique control knob specific to vdW systems is the twist angle q between the adjacent layers. Varying q forms moiré superlattices that can radically modify the electronic structure and attendant properties[288 – 302].  Plasmons, phonons and excitons are all altered in moire superlattices prompting changes of the corresponding polaritons. G/hBN[cross-Ni-Moire].   Infrared nano-imaging data display rich real space patterns of polaritonis with selected examples of moire polaritons displayed in Fig.6. Morie design principle can be applied to epitaxially grown thin films on dielectric substrates[303].  Recent experiments on interlayer excitons in TMDC heterobilayers have revealed the trapping of these excitons on the moire potential landscape[304 – 307]. When placed in an optical cavity, such moire trapped excitons may form an exciton polariton lattice and serve as analog quantum simulators (see polaritonic lattices and quantum simulators).

Molecular Polaritons

Molecular polaritons.  Organic semiconductors and molecules embedded in optical (nano)cavities under strong and ultrastrong coupling promote the dynamical formation of molecular polaritons: hybrid energy eigenstates composed of entangled photonic, electronic, and vibrational degrees of freedom [34 ,312, 313]. Molecular polaritons were demonstrated to enhance energy transfer[314] and DC coductivity[315]. Progress with nano-structures enabled a demonstration of the strong-light matter coupling with a single molecule embedded in a plasmonic cavity[316]. Molecular molaritons enable control of optical nonlinarities via manipulations of cavity characteristics[317]. Molecular polaritons can form hybrid polaritons by coupling to surface plasmons[318], for example. We remark that molecular polaritons are commonly reffered to as vibrational polaritons.

Mott Polaritons(QED)

Mott polaritons (QED): non-equilibrium driven states in an array of circuit QED cavities or optical resonators[319, 320]. See also polaritonic lattices.

Mott Polaritons (QM)

Mott polaritons (QM) were also introduced in context of the resonant coupling between strongly correlated electrons in solid Mott insulators integrated in a single-mode cavity[321].


Phonon Polaritons

Phonon polaritons: is a collective excitation comprised of (infrared) light coupled with a polar lattice vibration. Like other polaritons, phonon polaritons can be understood in terms of an anti-crossing of the dispersion curves of light and matter constituents (Fig. 5). Early observations of phonon polaritons (see Hopfield polaritons) in bulk crystals and films were made using a variety of spectroscopic methods[322,323]. More recent work[324] has focused on the generation, detection, and on picosecond polaritons dynamics[325329]. By matching the phonon-polariton velocity in LiNbO3 crystal to the group velocity of the fs punp pulse Yeh et al. have been able to generate intense THz fields of the order of 10 mJ energy[330]. Advanced nano-imaging/spectroscopy methods[331333].were employed for the real-space visualization of phonon polariton standing ways. Phonon-polaritons play a major role in nano-scale thermal transport at nano- and meso-scales [86, 334339]. Phonon polaritons in the anisotropic oxide material MoO3 reveal both elliptical and hyperbolic dispersions[340341]. The dispersion and propagation of phonon-polaritons can be controlled by nano-structuring[342]  and twist-angle (moire) engineering (Fig.6).  The recent discovery of parametric phonon amplification in SiC paves the way for the exploration of non-linear and active phonon-polariton phenomena[343]. Surface phonon polaritons (see also Fuchs-Kliewer interface polaritons), reveal a dispersion branch located between longitudinal and transverse vibrational modes (see hybrid polaritons).  Dai et al. detected surface phonon polaritons in monolayers of hBN[344].



Plasmon Polaritons

Plasmon polaritons:  probably the most thoroughly studied class of polaritons. A surface plasmon polariton is a transverse magnetic (TM)-polarized optical surface wave that, for example, propagates along a flat metal-dielectric interface, typically at visible or infrared wavelengths[345 – 347]. Plasmon polaritons have rich implications for technology[348 – 351]. Nonlinear[352 – 354]  and quantum[355 – 359] properties of plasmonic structures are in the vanguard of current research. Plasmon-polaritons can be controlled at femto-second time scales[67267360 – 363] enabling access to novel physics and applications[364, 365]. Plasmonic waveguides have been incorporated with light-emitting materials, paving the way for integrated plasmonic and photonic structures[366]. Plasmon-polaritons have been harnessed to implement high-quality factors such as whispering gallery microcavities[367]. In parallel, many research groups are searching for new plasmonic media with the properties optimized for different classes of plasmonic effects[368 – 371]. Van der Waals materials, and especially graphene, are emerging as outstanding plasmonic media in light of their inherent tunability with different stimuli (see Dirac plasmons). Acoustic plasmon polaritons are a special example of hybrid polaritons whose frequency-momentum w(q) dispersion is predicted to be linear[372 – 376]. Acoustic plasmon plaritons have been demonstrated[377 – 379] in structures where graphene resides in close proximity to metallic surfaces. Spoof surface plasmons polaritons were introduced describe plasmon polaritons on the surface of artificial metallic structures and metamaterials[380]. Airy surface plasmon polaritons are the surface counterparts of non-diffracting airy waves[381] and have been demonstrated by direct nano-imaging[382]. Chiral plasmon polaritons[383] were predicted to occur in twisted bilayer graphene[384].


Plexcitons are a specific example of hybrid polaritons. The matter constituent of plexcitons originates from plasmon-exciton coupled modes [386 – 392]Historically, plexciton studies have focused primarily on localized states [387, 393]. Propagating plexciton states also exist and offer potential for compact quantum information carriers a well as opportunities for mediating emitter-emitter coupling[394 – 396]. Composite structures and multilayers can feature plexcitons. An interesting recent example of plexciton study has been conducted in the setting of scanning probe nano-optical imaging and spectroscopy (Fig.8). This work by May et al [398] along with a study by Groß et al. [397] implemented the scanning optical cavities formed between a nano-optical antenna and the substrate. The authors investigated CdSe/ZnS quantum dots using this scanning cavity approach and observed plexitonic Rabi splitting of 163 meV.

Polaritons Parametric Amplification

Polaritons parametric amplification, gain and lasing have been demonstrated for exciton polaritons in microcavities [52,399 – 401].  Resonant coupling between photons and excitons in microcavities can efficiently generate significant single-pass optical gains. Polaritonic lasing has been implemented and analyzed in different material systems hosting plasmon polartions and exciton polaritons[402]. Amplification of demons [107] has been predicted as well but is yet to be experimentally demonstrated.

Polaritonic Chemistry


Polaritonic chemistry: an emerging field focused on modifying pathways of chemical reactions in molecular systems coupled to photonic cavities[403 – 407].

Polaritonic Circuits

Polaritonic circuits, devices, arrays and systems. Both light and matter constituents of polaritons are amenable to controls with external stimuli[408].  The use of exciton polaritons as building blocks for future information processing such as spin-switches[409],spin-memory[410], transistors[411], logic gates[412], resonant tunneling diodes[413], routers[414] , lasers[415] has recently been demonstrated. The first polaritonic systems are also emerging and include quantum simulators and networks for neuromorphic computers[416]. Transition metal dichalcogenide material WSe2, integrated into microcavity devices acts as efficient light emitting device[417].

Polaritonic Lattices and Quantum Simulators

Polaritonic lattices and quantum simulators.  A variety of experimental approaches have been utilized to implement one- and two-dimensional arrays of interacting polaritons. In the field of microcavity exciton polaritons gate arrays, spatially dependent optical potential as well as surface acoustic waves[418], have been utilized to generate arrays/lattices[419]. One-dimensional exciton polariton superlattices reveal weak lasing assigned to a novel type of a phase transition in this interacting system[420]. Arrays of evanescently-coupled cavities hosting neutral atoms[421] have been proposed as quantum simulators (QS), where the photon blockade provided by the atom limits the occupancy of each cavity to one, allowing for the implementation of the Bose-Hubbard model. QSs require controllable quantum systems that efficiently simulate a Hamiltonian of interest, which may encode phases with a significant degree of entanglement and is not amenable to calculations by classical computer [422 – 427].  Lattices of exciton polaritons [422, 428432] have emerged as a promising platform for QS, along with ultracold atoms [425, 433], trapped ions [434436], and superconducting circuits [437, 438]. Moire superlattices of plasmon polaritons (Figure 6) present yet another example of polaritonic lattices. Moire superlattices were realized in graphene devices with nanostructured gate electrodes [439] as well as in moire superlattices of twisted graphene layers [308].

Polaritonic interference refraction, collimation, front shaping and waveguiding

Polaritonic interference, refraction, collimation, front shaping, and waveguiding. All these common wave phenomena are relevant to polaritons (Figure 9). In van der Waals materials, domain wall boundaries can act a polaritonc reflectors [440442], or conductors [443]. Zia and Brongersma [444] demonstrated Young’s double-slit experiments with surface plasmon polaritonss. Beyond analogs of geometrical optics effects, polaritons offer at least two novel routes for image formation. First, hyperbolic polaritons enable canalization imaging [247], with images effectively transferred by high-momentum subdiffractional polaritonic rays from the back to the front surface of the polaritonic medium [248, 250, 311, 445] (Figure 9C). Second, polaritons are amenable to guiding and steering using methods of transformation optics. Polaritonic waveguides have been implemented over a broad range of frequencies from THz [446] and infrared regions to visible light. Peier et al. observed phonon–polariton tunneling across the airgap [447]. Advanced polaritonic launchers and metalenses (Figure 9D) are well suited for defining the trajectories of polaritonic surface “beams” [448, 449]. In highly nonlinear regime polaritons are predicted to display selffocusing effects and to form solitons [450].

Polariton-polariton interactions

Polariton-polariton interactions. The interaction of polaritons stems from their underlying matter constituents. In close analogy with other interacting systems, polariton-polariton interactions renormalize the dispersion and also prompt a blue shift of the emission energy as the polariton density increases[451452]. Polariton-polariton interaction effects have been recently demonstrated for microcavity exciton polaritons[453454]. See also quantum Hall polaritons.

Polariton Polaritons

Polaron-polaritons. In TMDC monolayers, the itinerant electrons dynamically screen exciton to form new quasiparticle branches — the attractive and repulsive polaron — each with a renormalized mass and energy[458,459]. Microcavity polaritons with the matter constituent linked to these polaron branches are referred to as polaron-polaritons [458] .

Quantum Hall Polaritons

Quantum Hall polaritons are a product of coupling cavity photons to the cyclotron resonance excitations of electron liquids in high-mobility semiconductor quantum wells or graphene sheets[460,461]. The edge channels of the quantum Hall effect offer a platform for probing interference and entanglement effects in the setting of a condensed matter system since the edge states propagation is ballistic, one-dimensional, and chiral. This platform enables experimental implementation of electron quantum optics[462 – 465] and may be suitable for the realization of flying qubits. In a parallel development, Smolka et al. [466] investigated cavity exciton polaritons in the presence of high-mobility 2D electron gas subjected to external magnetic field and discovered novel correlated electron phases Knuppel et al. [467] reported on strong polariton polariton interactions in the fractional quantum Hall regime.

Rydberg Polaritons (QED)

Rydberg polaritons (QED): photons dressed by highly excited atomic Rydberg states under conditions of electromagnetic induced transparency. These polaritons can either reside in a cavity or propagate throughout an atomic ensemble.  In a cavity, Rydberg dressing bestows an atomic ensemble with the character of a two-level system: the excitation of a single Rydberg polariton prevents the creation of a second one, in the so-called “Rydberg blockade” regime. Under conditions of electromagnetic induced transparency, polaritons can propagate within an optically-dense atomic cloud. These polaritons can then be made to interact with each other via Rydberg dressing: the first Rydberg polariton alters the transparency condition for the second one, preventing its propagation within a certain “blockade radius” [470473] .Rydberg polaritons are appealing for quantum logic functionalities[474] and for realizing synthetic materials via many-body states of light [140, 171]

Rydberg Polaritons (QM)

Rydberg polaritons (QM): a special example of exciton polaritons with matter constituent associated with strongly interacting Rydberg states of excitons [137]. Candidate systems include TMDC monolayers [475, 476] and cuprous oxide, where Rydberg states with principal quantum numbers of up to n = 25 are feasible [477].

Soliton Polaritons

Soliton polaritons. Propagating wavepackets in semiconductor micorcavities are referred to as soliton polaritons (Fig.10 C). In quantum optics, topological soliton polaritons refer to composite objects made of fermions trapped in an optical soliton. The prototypical one-dimensional (1D) model of solitons posessing nontrivial topology is the model of Su-Schrieffer-Heeger (SSH) chains[478].  Variants of the SSH Hamiltonian have been emulated in the 1D lattices of microcavity exciton polaritons[479] and also in the system of quantum emitters coupled to a photonic waveguide[480]. Topological phases of polritons in cavity waveguides were analysed in Ref. [[481]].

Spin Polaritons

Spin polaritons: this term was coined in the context of polariton microcavity diode lasers operating via injection of spin polarized currents[482].


Spin Plasmon Polaritons

Spin plasmon polaritons are relevant to the plasmonic response of spin-polarized electron gas[483]. Alternatively, spin-orbit interaction may lift the degeneracy between the spin states and give rise to transitions responsible for peculiar dispersion features of spin plasmon polaritons[484]. The surface plasmon of a helical electron liquid is predicted to carry spin and is also referred to as a spin plasmon polariton[485].



Transformation Optics with Polaritons

Transformation optics with polaritons. Transformation optics refers to a general principle for designing a complex electromagnetic medium with tailored properties by carefully crafting the spatial patterns of the local optical index[486,487]. This general principle has been extended to polaritons[488] and polartonic cavities[489], and specifically to plasmon polaritons in graphene[490].  Losses present the most significant experimental roadblock for practical transformational polaritonics. Recent advances with highly confined but low-loss plasmon polaritons [110] and phonon-polaritons [223] fulfill important experimental preconditions for the realization of transformation optics ideas in polaritonic systems.


Tamm Surface Plasmon Polaritons

Tamm surface plasmon polaritons are associated with Tamm states at metallic surfaces[491].  Common surface plasmon polaritons are formed with a TM (transverse magnetic) polarization at the boundary of metallic and dielectric surfaces and lie to the right of the light cone. Tamm polaritons are found with both TM and TE (transverse electric) polarizations and their dispersion can be within the light cone[492,493].


Trion Polaritons

Trion polaritons.  The matter constituent of these polaritons is formed by charged excitons or trions (see also charged polaritons). Trion polaritons are commonly found in the response of TMDC semiconductors[494,495] and also in carbon nanotubes[496].


Tunneling Plasmon Polaritons

Tunneling plasmon polaritons were predicted[497] and observed[498] in an atomically thick tunable quantum tunnelling devices consisting of two layers of graphene separated by 1 nm of h-BN. By applying a bias voltage between the graphene layers one creates an electron gas coupled to a hole gas. Even though the total charge of the devices is zero, this system supports propagating graphene plasmons.

Valley Polaritons

Valley polaritons. The matter constituent of these polaritons originates from valley polarized excitons in TMDC semiconductors (Fig.4B and exciton polaritons).  The electronic structure of two-dimensional TMDC semiconductors endows this class of materials with the spin–valley degree of freedom that provides an optically accessible route for the control and manipulation of electron spin[499 – 501].

Vibrational polaritons

Vibrational polaritons: see molecular polaritons.

Wannier or Wannier-Mott Polaritons

Wannier or Wannier-Mott polaritons borrow their matter part from Wannier excitons in semiconductors[502].


Waveguides and photonic crystals for polaritons

Waveguides and photonic crystals for polaritons. Waveguides and photonic crystals allow one to design and control the properties of photons, and thus of polaritons, both in quantum optics and quantum materials. In waveguide QED, different type of emitters (neutral atoms, quantum dots, color centers, superconducting qubits) are coupled to a one-dimensional (1D) optical channels[505], such as fibers[506,507], photonic crystals[508,509], and transmission lines[510,511] (Box 1 and Fig.11 A). Channel with a band gap give rise to atom-photon bound states (i.e., polaritonic bound states) provided the atomic resonance frequency is close to the band edge. Beyond the band-edge, photons are bound to the atoms, forming localized polaritonic cavities that can be harnessed for realizing quantum simulation and quantum information processing (Box 1). If the coupling between photons and atoms is strong enough, bound states emerge even if the atomic resonance frequency lies inside the band (i.e., as a “bound states in the continuum”) due to multiple scattering [503 ,512]. In the field of quantum materials, photonic-crystals structures were fabricated using common phonon-polariton oxide systems LiTaO3 and LiNbO3 (Fig. 11B). Pump-probe experiments in Fig. 11B revealed the key attributes of the dispersion control by these periodic structures.  A significant deficiency of conventional photonic crystals is that they do not allow for dynamical dispersion engineering. Xiong et al. circumvented this limitation and demonstrated a broadly tunable two-dimensional photonic crystal for surface plasmon polaritons [cross-ref-xiond]. Infrared nano-imaging revealed the formation of a photonic bandgap and an artificial domain wall which supports highly confined one-dimensional plasmonic modes.

Zenneck-Sommerfeld waves and Norton waves

Zenneck-Sommerfeld waves and Norton waves: an early example of a guided electromagnetic wave at the interface of media with negative and positive dielectric function Refs.[513 – 515] the same condition that is required for the formation of polaritonic modes in THz, infrared and optical frequencies. The original prediction of Zenneck-Sommerfeld waves pertained to the radiofrequency wave at the interface of air and the earth. In this analysis the surface of the Earth was regarded as a lossy dielectric. The concept of Zenneck-Sommerfeld waves and closely related Norton waves has been applied to a broad class of wave patterns on the surface of metallic[516 – 519] and dielectric materials[520].


1. D. N. Basov, M. M. Fogler, and F. J. Garcia de Abajo, “Polaritons in van der Waals materials,” Science 354, 195 (2016).
2. D.N. Basov, R.D. Averitt and D. Hsieh, “Towards properties on demand in quantum materials,” Nature Materials 16, 1077 (2017).
3. T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno and F. Koppens, “Polaritons in layered two-dimensional materials,” Nature Materials 16, 182 (2017).
4. D. E. Chang J.S. Douglas, A. Gonzalez-Tudela, C.-L. Hung, and H.J. Kimble, “Colloquium: Quantum matter built from a nanoscopic lattices of atoms and photons,” Reviews of Modern Physics 90, 031002 (2018).
5. A. A. Clerk, K. W. Lehnert, P. Bertet, J. R. Petta and Y. Nakamura, “Hybrid quantum systems with circuit quantum electrodynamics,” Nature Physics 16, 257 (2020).
6. I. Carusotto, A. A. Houck, P. Roushan, D. I. Schuster, and J. Simon, “Photonic materials in circuit quantum electrodynamics,” Nature Physics 16 268 (2020).
7. M. Ruggenthaler, N. Tancogne- Dejean, J. Flick, H. Appel, and A. Rubio, “From a quantum-electrodynamical light–matter description to novel spectroscopies,” Nature Reviews Chemistry 2, 0118 (2018).
8. P. Forn-Díaz, L. Lamata, E. Rico, J. Kono, and E. Solano, “Ultrastrong coupling regimes of light-matter interaction,” Reviews of Modern Physics 91, 025005 (2019).
9. Michael A. Sentef, Jiajun Li, Fabian Ku ̈nzel, and Martin Eckstein, “Quantum to classical crossover of Floquet engineering in correlated quantum system,s” Physical Review Research 2, 033033 (2020).
10. A.F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, “Ultrastrong coupling between light and matter,” Nature Reviews Physics 1, 19 (2019).
11. René Jestädt, Michael Ruggenthaler, Micael J. T. Oliveira, Angel Rubio, and Heiko Appel “Light-matter interactions within the Ehrenfest–Maxwell–Pauli–Kohn–Sham framework: fundamentals, implementation, and nano-optical applications,” Advances in Physics 68, 225 (2020).
12. Michael Ruggenthaler, Nicolas Tancogne-Dejean, Johannes Flick, Heiko Appel, and Angel Rubio, “From a quantum-electrodynamical light–matter description to novel spectroscopies,” Nature Reviews Chemistry 2, 0118 (2018).
13. P. Torma and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: A review,” Reports on Progress in Physics 78(1), 013901 (2015).
14. Zachary M. Raines, Andrew A. Allocca, Mohammad Hafezi, and Victor M. Galitski, “Cavity Higgs polaritons,” Physical Review Research 2, 013143 (2020).
15. Z. Sun, M.M. Fogler, D.N. Basov, and A. J. Millis, “Collective modes and THz near field response of superconductors,” Physical Review Research 2, 023413 (2020).
16. P. B. Littlewood and C. M. Varma, “Gauge-Invariant Theory of the Dynamical Interaction of Charge Density Waves and Superconductivity” Physical Review Letters 47, 811 (1981).
17. L. R. Walker, “Magnetostatic Modes in Ferromagnetic Resonance,” Physical Review 105, 390 (1957).
18. Andrew A. Allocca, Zachary M. Raines, Jonathan B. Curtis, and Victor M. Galitski, “Cavity superconductor-polaritons” Physical Review B 99, 020504(R) (2019).
19. Z. Sun and A. Millis, “Bardasis-Schrieffer polaritons in excitonic insulators,” Physical Review B 102, 041110 (2020).
20. H.T. Stinson, A. Sternbach, O. Najera, R. Jing, A.S. Mcleod, T.V. Slusar, A. Mueller, L. Anderegg, H.T. Kim, M. Rozenberg, and D.N. Basov, “Imaging the nanoscale phase separation in vanadium dioxide thin films at terahertz frequencies,” Nature Communications 9, 3604 (2018).
21. N.G. Basov, “Semiconductor lasers,” Science 149, 821 (1965).
22. Hui Deng, “Exciton-polariton Bose-Einstein condensation,” Reviews of Modern Physics 82, 1489 (2010).
23. T. Schwartz, J.A. Hutchison, C. Genet, and T.W. Ebbesen, “Reversible switching of ultra-strong coupling,” Physical Review Letters 106, 196405 (2011).
24. S. Kéna-Cohen, S.A. Maier, and D.D.C. Bradley, “Ultrastrongly coupled exciton–polaritons in metal-clad organic semiconductor microcavities,” Advanced Optical Materials 1, 827 (2013).
25. L. Tian and H. J. Carmichael, “Quantum Trajectory Simulations of the Two-State Behavior of an Optical Cavity Containing One Atom,” Physical Review A 46, R6801 (1992).
26. A. Imamoğlu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly Interacting Photons in a Nonlinear Cavity,” Physical Review Letters 79, 1467 (1997).
27. J. S. Douglas, H. Habibian, C.-L. Hung, A. V. Gorshkov, H. J. Kimble and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nature Photonics 9, 326 (2015).
28. S. Dufferwiel, S. Schwarz, F. Withers, A.A.P. Trichet, F. Li, M. Sich, O. Del Pozo-Samudio, C. Clark, A. Nalitov, D.D Solynyshkov, G. Malpuech, K.S. Novoselov, J.M. Smith, M.S. Skolnick, D.N. Krizhanovskii, and A.I. Tartakovskii, “Exciton-polaritons in van der waals heterostructures embedded in tunable microcavities,” Nature Communications 6, 8579 (2015).
29. N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A.V. Nalitov, M. Klaas, C.P. Dietrich, A.V. Kavokin, S. Hofling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nature Communications 7, 13328 (2016).
30. Xiaoze Liu, Tal Galfsky, Zheng Sun, Fengnian Xia, Erh-chen Lin, Yi-Hsien Lee, Stéphane Kéna-Cohen and Vinod M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nature Photonics 9, 30 (2015).
31. J. Sik, M. Schubert, T. Hofman and V. Gottschalch, “Free-carrier effects and optical phonons in GaNAs/GaAs superlattice heterostructures measured by infrared spectroscopic ellipsometry,” Cambridge University Press, 5 (2014).
32. E.L. Runnerstrom, K.P. Kelley, E. Sachet, C.T. Shelton, and J.P. Maria, “Epsilon-near-Zero Modes and Surface Plasmon Resonance in Fluorine-Doped Cadmium Oxide Thin Films,” ACS Photonics 4, 1885(2017).
33. K.P. Kelley, E.L. Runnerstrom, E. Sachet, C.T. Shelton, E.D. Grimley, A. Klump, J.M. LeBeau, Z. Sitar, J.Y. Suen, W.J. Padilla, and J-P. Maria, “Multiple Epsilon-Near-Zero Resonances in Multilayered Cadmium Oxide: Designing Metamaterial-Like Optical Properties in Monolithic Materials,” ACS Photonics 6, 1139 (2019).
34. Andrea Alù, Mário G. Silveirinha, Alessandro Salandrino, and Nader Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Physical Review B 75, 155410 (2007).
35. V. Bruno, C. DeVault, S. Vezzoli, Z. Kudyshev, T. Huq, S. Mignuzzi, A. Jacassi, S. Saha, Y. D. Shah, S. A. Maier, D. R. S. Cumming, A. Boltasseva, M. Ferrera, M. Clerici, D. Faccio, R. Sapienza, and V. M. Shalaev, “Negative Refraction in Time-Varying Strongly Coupled Plasmonic-Antenna–Epsilon-Near-Zero Systems,” Physical Review Letters 124, 043902 (2020).
36. T.G. Folland, G. Lu, A. Bruncz, J.R. Nolen, M. Tadjer, and J.D. Caldwell, “Vibrational Coupling to Epsilon-Near-Zero Waveguide Modes,” ACS Photonics 7, 614 (2020).
37. Mohammad H. Javani and Mark I. Stockman, “Real and Imaginary Properties of Epsilon-Near-Zero Materials,” Physical Review Letters 117, 107404 (2016).
38. K.P. Kelley, E.L. Runnerstrom, E. Sachet, C.T. Shelton, E.D. Grimley, A. Klump, J.M. LeBeau, Z. Sitar, J.Y. Suen, W.J. Padilla and J.-P. Maria, “Multiple Epsilon-Near-Zero Resonances in Multilayered Cadmium Oxide: Designing Metamaterial-Like Optical Properties in Monolithic Materials,” ACS Photonics 6, 5, 1139 (2019).
39. D. Yoo, F. de Leon-Perez, I.-H. Lee, D.A. Mohr, M. Pelton, M.B. Raschke, J.D. Caldwell, L. Martin-Moreno, and S.-H. Oh, “Ultrastrong plasmon-phonon coupling via epsilon-near-zero nanocavities,” arXiv:2003.00136 (2020).
40. Ahmed M. Mahmoud, Yue Li, Brian Edwards, and Nader Engheta, “Photonic doping of epsilon-near-zero media Iñigo Liberal,” Science 355, 10568 (2017).
41. J. C. W. Song and M.S. Rudner, “Chiral plasmons without magnetic field,” PNAS 113 (17) 4658 (2016).
42. A. Kumar, A. Nemilentsau, K. Hung Fung, G. Hanson, N.X. Fang, and T. Low, “Chiral plasmon in gapped Dirac systems,” Phys. Rev. B 93, 041413(R) (2016).
43. Li-kun Shi and Justin C. W. Song, “Plasmon Geometric Phase and Plasmon Hall Shift,” Physical Review X 8, 021020 (2018).
44. P.M. J. Bhaseen, M. Hohenadler, A. O. Silver, and B. D. Simons, “Polaritons and Pairing Phenomena in Bose-Hubbard Mixtures,” Physical Review Letters 102, 135301 (2009).
45. P. Cilibrizzi, H. Sigurdsson, T. C. H. Liew, H. Ohadi, A. Askitopoulos, S. Brodbeck, C. Schneider, I. A. Shelykh, S. H¨ofling, J. Ruostekoski, and P. Lagoudakis, “Half-skyrmion spin textures in polariton microcavities,” Physical Review B 94, 045315 (2016).
46. Stefano Donati, Lorenzo Dominici, Galbadrakh Dagvadorj, Dario Ballarini, Milena De Giorgi, Alberto Bramati, Giuseppe Gigli, Yuri G. Rubo, Marzena Hanna Szymańska, and Daniele Sanvitto, “Twist of generalized skyrmions and spin vortices in a polariton superfluid,” PNAS 113, 14926 (2016).
47. Hannes Hubener, Umberto De Giovannini, Christian Schafer, Johan Andberger, Michael Ruggenthaler, Jerome Faist, and Angel Rubio, “Quantum cavities and Floquet materials engineering: the power of chirality,” Nature Materials 2020 (in press).
48. Varun D. Vaidya, Yudan Guo, Ronen M. Kroeze, Kyle E. Ballantine, Alicia J. Kollár, Jonathan Keeling, and Benjamin L. Levy, “Tunable-Range, Photon-Mediated Atomic Interactions in Multimode Cavity QED,” Physical Review X 8, 011002 (2018).
49. Ningyuan Jia, Nathan Schine, Alexandros Georgakopoulos, Albert Ryou, Logan W. Clark, Ariel Sommer, and Jonathan Simon, “A strongly interacting polaritonic quantum dot,” Nature Physics 14, 550 (2018).
50. S. Faure, C. Brimont, T. Guillet, T. Bretagnon, B. Gil, F. Medard, D. Lagarde, P. Disseix, J. Leymarie, J. Zuniga-Perez, M. Leroux, E. Frayssinet, J.C. Moreno, F. Semond, and S. Bouchoule, “Relaxation and emission of Bragg-mode and cavity-mode polaritons in a ZnO microcavity at room temperature,” Applied Physics Letters 95, 121102 (2009).
51. D. Goldberg, L.I. Deych, A.A Lisyansky, Z. Shi, V.M. Menon, V. Tokranov, M. Yakimov, and S. Oktyabrsky, “Exciton-lattice polaritons in multiple-quantum-well-based photonic crystals,” Nature Photonics 3, 662 (2009).
52. E.S. Sedov, I.V. Iorsh, S.M. Arakelian, A.P. Alodjants, and A. Kavokin, “Hyperbolic metamaterials with Bragg polaritons,” Physical Review Letters 114, 237402 (2015).
53. C. Weisbuch and H. Benisty, “Microcavities in ecole polytechnique federale de lausanne, ecole polytechnique (france) and elsewhere: past, present and future,” phys. stat. sol. (b), 242, 2345 (2005).
54. Alexey Kavokin and Guillaume Malpuech “Cavity polaritons,” Academic press 32, 246 (2003).
55. P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-resonant stimulated polariton amplifier,” Physical Review Letters 84, 1547 (2000).
56. R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities,” Physical Review Letters 85, 3680 (2000).
57. H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons” Science 298, 1999 (2002).
58. Thierry Guillet, and Christelle Brimont, “Polariton condensates at room temperature,” Comptes Rendus Physique 17, 946 (2016).
59. Álvaro Cuevas, Juan Camilo López Carreño, Blanca Silva, Milena De Giorgi, Daniel G. Suárez-Forero, Carlos Sánchez Muñoz, Antonio Fieramosca, Filippo Cardano, Lorenzo Marrucci, Vittorianna Tasco, Giorgio Biasiol, Elena del Valle, Lorenzo Dominici, Dario Ballarini, Giuseppe Gigli, Paolo Mataloni, Fabrice P. Laussy, Fabio Sciarrino, and Daniele Sanvitto, “First observation of the quantized exciton-polariton field and effect of interactions on a single polariton,” Science Advances 4: eaao6814 (2018).
60. Aymeric Delteil, Thomas Fink, Anne Schade, Sven Höfling, Christian Schneider and Ataç İmamoğlu, “Towards polariton blockade of confined exciton–polaritons,” Nature Materials 18, 219 (2019).
61. Guillermo Muñoz-Matutano, Andrew Wood, Mattias Johnsson, Xavier Vidal, Ben Q. Baragiola, Andreas Reinhard, Aristide Lemaître, Jacqueline Bloch, Alberto Amo, Gilles Nogues, Benjamin Besga, Maxime Richard and Thomas Volz, “Emergence of quantum correlations from interacting fibre-cavity polaritons,” Nature Materials 18, 213 (2019).
62. S. S. Demirchyan, Yu. Chestnov, A. P. Alodjants, M. M. Glazov, and A. V. Kavokin, “Qubits Based on Polariton Rabi Oscillators” Physical Review Letters 112, 196403 (2014).
63. I. V. Novikov and A. A. Maradudin, “Channel polaritons” Physical Review B 66, 035403 (2002).
64. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveg- uide components including interferometers and ring resonators,” Nature 440, 508 (2006).
65. P.A.D. Gonca̧lves, Sanshui Xiao, N.M.R. Peres, and N. Asger Mortensen, “Hybridized Plasmons in 2D Nanoslits: From Graphene to Anisotropic 2D Materials,” ACS Photonics 4, 3045 (2017).
66. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
67. Jianing Chen, Michela Badioli, Pablo Alonso-Gonza´lez, Sukosin Thongrattanasiri, Florian Huth, Johann Osmond, Marko Spasenovic, Alba Centeno, Amaia Pesquera, Philippe Godignon, Amaia Zurutuza Elorza, Nicolas Camara, F. Javier Garcia de Abajo, Rainer Hillenbrand and Frank H. L. Koppens “Optical nano-imaging of gate-tunable graphene Plasmons,” Nature 487, 77 (2012).
68. Michael D. Goldflam, Guang-Xin Ni, Kirk W. Post, Zhe Fei, Yuting Yeo, Jun You Tan, Aleksandr S. Rodin, Brian C. Chapler, Barbaros Özyilmaz, Antonio H. Castro Neto, Michael M. Fogler, and D. N. Basov “Tuning and Persistent Switching of Graphene Plasmons on a Ferroelectric Substrate,” Nano Letters 15, 4859 (2015).
69. Sanshui Xiao, Xiaolong Zhu, Bo-Hong Li, and N. Asger Mortensen, “Graphene-plasmon polaritons: From fundamental properties to potential applications,” Frontiers of Physics 11, 117801 (2016).
70. Martin Wagner, Zhe Fei, Alexander S. McLeod, Aleksandr S. Rodin, Wenzhong Bao, Eric G. Iwinski, Zeng Zhao, Michael Goldflam, Mengkun Liu, Gerardo Dominguez, Mark Thiemens, Michael M. Fogler, Antonio H. Castro Neto, Chun Ning Lau, Sergiu Amarie, Fritz Keilmann, and D. N. Basov, “Ultrafast and Nanoscale Plasmonic Phenomena in Exfoliated Graphene Revealed by Infrared Pump–Probe Nanoscopy,” Nano Letters 14, 894 (2014).
71. Daniel J. Rizzo, Bjarke S. Jessen, Z.Sun, F.Ruta, J.Zhang, A.S. McLeod, M.E. Berkowitz, K. Watanabe, T. Taniguchi, S. Nagler, D.Mandrus, Angel Rubio, M.M. Fogler, A.J. Millis, J.C. Hone, C.R. Dean, and D.N. Basov, “Graphene/α-RuCl3: An Emergent 2D Plasmonic Interface,” arXiv:2007.07147 (2020).
72. Fangfang Wen, Yue Zhang, Samuel Gottheim, Nicholas S. King, Yu Zhang, Peter Nordlander, and Naomi J. Halas, “Charge Transfer Plasmons: Optical Frequency Conductances and Tunable Infrared Resonances,” ACS Nano 9, 6428 (2015).
73. M. Forg, L. Colombier, R.K. Patel, J. Lindlau, A.D. Mohite, H. Yamaguchi, M.M. Glazov, D. Hunger, and A. Hogele, “Cavity-control of interlayer excitons in van der Waals heterostructures,” Nature Communications 10, 3697 (2019).
74. R. Rapaport, R. Harel, E. Cohen, Arza Ron, E. Linder, and L.N. Pfeiffer, “Negatively Charged Quantum Well Polaritons in a GaAs/AlAs Microcavity: An Analog of Atoms in a Cavity,” Physical Review Letters 84, 1607 (2000).
75. J. M. Raimond and S. Haroche, “Confined Electrons and Photons,” edited by E. Burstein and C. Weisbuch, Springer- New Physics and Applications, 383 (1995).
76. A. Tiene, J. Levinsen, M. M. Parish, A. H. MacDonald, J. Keeling, and F. M. Marchetti, “Extremely imbalanced two-dimensional electron-hole-photon systems,” Physical Review Research 2 023089 (2020).
77. P.A. Cherenkov. “Visible emission of clean liquids by action of γ radiation,” Dokl. Akad. Nauk SSSR 2, 451 (1934).
78. Patrice Genevet, Daniel Wintz, Antonio Ambrosio, Alan She, Romain Blanchard and Federico Capasso, “Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial,” Nature Nanotechnology 10, 804 (2015).
79. D.H. Auston, K.P. Cheung, J.A. Valdmanis, and D.A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Physical Review Letters 53, 1555 (1984).
80. C. Maciel-Escudero, Andrea Koneˇcn ́a, Rainer Hillenbrand, and Javier Aizpurua, “Probing and steering bulk and surface phonon polaritons in uniaxial materials using fast electrons: hexagonal boron nitride,” arXiv:2006.05359v1 (2020).
81. Yiran Zhang, Cheng Hu, Bosai Lyu, Hongyuan Li, Zhe Ying, Lele Wang, Aolin Deng, Xingdong Luo, Qiang Gao, Jiajun Chen, Jing Du, Peiyue Shen, Kenji Watanabe, Takashi Taniguchi, Ji-Hun Kang, Feng Wang, Yueheng Zhang, and Zhiwen Shi, “Tunable Cherenkov Radiation of Phonon Polaritons in Silver Nanowire/Hexagonal Boron Nitride Heterostructures,” Nano Letters 20, 2770 (2020).
82. H. T. Stinson, J. S. Wu, B. Y. Jiang, Z. Fei, A. S. Rodin, B. C. Chapler, A. S. McLeod, A. Castro Neto, Y. S. Lee, M. M. Fogler, and D. N. Basov, “Infrared nanospectroscopy and imaging of collective superfluid excitations in anisotropic superconductors,” Physical Review B 90, 014502 (2014).
83. Amaury Dodel, Alexander Pikovski, Igor Ermakov, Marek Narozniak, Valentin Ivannikov, Haibin Wu, and Tim Byrnes, “Cooper pair polaritons in cold fermionic atoms within a cavity,” Physical Review Research 2, 013184 (2020).
84. W.L. Barnes, A. Dereux, D T.W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
85. P.J. Schuck, D.P. Fromm, A. Sundaramurthy, G.S. Kino, and W.E. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Physical Review Letters 94, 017402 (2005).
86. P. Biagioni, J.S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Reports on progress in Physics 75, 024402 (2012).
87. L. Novotny, and N. Van Hulst, “Antennas for light,” Nature Photonics 5, 83 (2011).
88. J.J. Baumberg, J. Aizpurua, M.H. Mikkelsen, and D.R. Smith, “Extreme nanophotonics from ultrathin metallic gaps,” Nature Materials 18, 668 (2019).
89. M. Tamagnone, A. Ambrosio, K. Chaudhary, L.A. Jauregui, P. Kim, W.L. Wilson, and F. Capasso, “Ultra-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures,” Science Advances 4, eaat7189 (2018).
90. A.M. Dubrovkin, B. Qiang, T. Salim, D. Nam, N.I. Zheludey and Q.J. Wang, “Resonant nanostructures for highly confined and ultra-sensitive surface phonon-laritons,” Nature Communications 11, 1863 (2020).
91. L.V. Brown, M. Davanco, Z. Sun, A. Kretinin, Y. Chen, J.R. Matson, I. Vurgaftman, N. Sharac, A.J. Giles, M.M. Fogler, T. Taniguchi, K. Watanabe, K.S. Novoselov, S.A. Maier, A, Centrone, and J.D. Caldwell, “Nanoscale Mapping and Spectroscopy of Nonradiative Hyperbolic Modes in Hexagonal Boron Nitride Nanostructures,” Nano Letters 18, 1628 (2018).
92. Xinzhong Chen, Debo Hu, Ryan Mescall, Guanjun You, D. N. Basov, Qing Dai, and Mengkun Liu, “Modern Scattering-Type Scanning Near-field Optical Microscope for Advanced Material Research,” Advanced Materials 1804774 (2019).
93. Zhe Fei, Gregory O. Andreev, Wenzhong Bao, Lingfeng M. Zhang, Alexander S. McLeod, Chen Wang, Margaret K. Stewart, Zeng Zhao, Gerardo Dominguez, Mark Thiemens, Michael M. Fogler, Michael J. Tauber, Antonio H. Castro-Neto, Chun Ning Lau, Fritz Keilmann, and D.N. Basov, “Infrared Nanoscopy of Dirac Plasmons at the Graphene–SiO2 Interface,” Nano Lett. 11, 4701 (2011).
94. P.J. Schuck, A. Weber-Bargioni, P.D. Ashby, D.F. Ogletree, A. Schwartzberg, and S. Cabrini, “Life Beyond Diffraction: Opening New Routes to Materials Characterization with Next-Generation Optical Near-Field Approaches,” Adv. Funct. Mater. 23, 2539 (2013).
95. S. Berweger, J.M. Atkin, R.L. Olmon, and M.B. Raschke, “Light on the Tip of a Needle: Plasmonic Nanofocusing for Spectroscopy on the Nanoscale,” J. Phys. Chem. Lett. 3, 945 (2012).
96. K.D. Park, T. Jiang, G. Clark, X. Xu, M.B. Raschke, “Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect,” Nature Nanotechnology 13, 59 (2017).
97. B.-Y. Jiang, L. M. Zhang, A. H. Castro Neto, D. N. Basov, and M. M. Fogler, “Generalized spectral method for near-field optical microscopy,” J. of Appl. Phys. 119, 054305 (2016).
98. Fritz Keilmann and Rainer Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Journal: Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 362, 787 (2014).
99. Joanna M. Atkin, Samuel Berweger, Andrew C. Jones and Markus B. Raschke, “Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids,” Advances in Physics 61, 745 (2012).
100. M. Fleischhauer and M. D. Lukin, “Dark-State Polaritons in Electromagnetically Induced Transparency,” Physical Review Letters 84, 5094 (2000).
101. S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear Optical Processes Using Electromagnetically Induced Transparency,” Physical Review Letters 64, 1107 (1990).
102. M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Review of Modern Physics 75, 457 (2003).
103. M. Fleischhauer, A. Imamoglu and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Reviews of Modern Physics 77, 633 (2005).
104. H. Zoubi and H. Ritsch, “Lifetime and emission characteristics of collective electronic excitations in two-dimensional optical lattices,” Physical Review A 83, 063831 (2011).
105. R. J. Bettles, S. A. Gardiner, and C. S. Adams, “Cooperative eigenmodes and scattering in one-dimensional atomic arrays,” Physical Review A 94, 043844 (2016).
106. A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht, H. J. Kimble, and D. E. Chang, “Exponential Improvement in Photon Storage Fidelities Using Subradiance and “Selective Radiance,” in Atomic Arrays” Physical Review X 7, 031024 (2017).
107. E. Shahmoon, D. S. Wild, M. D. Lukin, and S. F. Yelin, “Cooperative Resonances in Light Scattering from Two-Dimensional Atomic Arrays,” Physical Review Letters 118, 113601 (2017).
108. D. Pines, “Electron Interaction in Solids,” Canadian Journal of Physics 34, 1379 (1956).
109. Zhiyuan Sun, Dmitry N. Basov, and Michael M. Fogler, “Universal linear and nonlinear electrodynamics of a Dirac fluid,” PNAS 115, 3285 (2018).
110. Zhiyuan Sun, D. N. Basov, and M. M. Fogler, “Adiabatic Amplification of Plasmons and Demons in 2D Systems,” Physical Review Letters 117, 076805 (2016).
111. Marinko Jablan, Hrvoje Buljan, and Marin Soljačić, “Plasmonics in graphene at infrared frequencies,” Physical Review B 80, 245435 (2009).
112. A. Woessner, M.B. Lundeberg, Y. Gao, A. Principi, P. Alonso-Gonzaolez, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F.H.L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nature Materials 14, 421 (2015).
113. G. X. Ni, A. S. McLeod, Z. Sun, L. Wang, L. Xiong, K. W. Post, S.S. Sunku, B.-Y. Jiang, J. Hone, C. R. Dean, M. M. Fogler and D. N. Basov “Fundamental limits to graphene plasmonics,” Nature 557, 530 (2018).
114. M. I. Dyakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67, 714 (1988).
115. Osamu Takayama, Lucian Crasovan, David Artigas, and Luis Torner, “Observation of Dyakonov Surface Waves,” Physical Review Letters 102, 043903 (2009).
116. J. Zubin and E.E. Narimanov, “Optical hyperspace for plasmons: Dyakonov states in metamaterials,” Applied Physics Letters 93, 221109 (2008).
117. Siyuan Dai, Mykhailo Tymchenko, Yafang Yang, Qiong Ma, Marta Pita-Vidal, Kenji Watanabe, Takashi Taniguchi, Pablo Jarillo-Herrero, Michael M. Fogler, Andrea Alù, and Dimitri N. Basov, “Manipulation and Steering of Hyperbolic Surface Polaritons in Hexagonal Boron Nitride,” Advanced Materials 30, 1706358 (2018).
118. F.J. Alfaro-Mozaz, P. Alonso-Gonza ́lez, S. Ve ́lez, I. Dolado, M. Autore, S. Mastel, F. Casanova, L.E. Hueso, P. Li, A.Y. Nikitin and R. Hillenbrand “Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas,” Nature Communications 8, 15624 (2017).
119. Irene Dolado, Francisco Javier Alfaro-Mozaz, Peining Li, Elizaveta Nikulina, Andrei Bylinkin, Song Liu, James H. Edgar, Felix Casanova, Luis E. Hueso, Pablo Alonso-González, Saül Vélez, Alexey Y. Nikitin, and Rainer Hillenbrand, “Nanoscale Guiding of Infrared Light with Hyperbolic Volume and Surface Polaritons in van der Waals Material Ribbons,” Advanced Materials 32, 1906530 (2020).
120. D. B. Mast, A.J. Dahm, and A.L. Fetter, “Observation of Bulk and Edge Magnetoylasmons in a Two-Dimensional Electron Fluid,” Physical Review Letters 54, 1706 (1985).
121. V. A. Volkov and S. A. Mikhailov, “Edge magnetoplasmons: low frequency weakly damped excitations in inhomogeneous two-dimensional electron systems,” Radio Engineering and Electronics Institute, USSR Academy of Sciences, Zh. Eksp. Teor. Fiz. 94, 217 (1988).
122. N. Kumada, P. Roulleau, B. Roche, M. Hashisaka, H. Hibino, I. Petković, and D. C. Glattli, “Resonant Edge Magnetoplasmons and Their Decay in Graphene,” Physical Review Letters 113, 266601 (2014).
123. Ivana Petkovic, F I B Williams and D Christian Glattli, “Edge magnetoplasmons in graphene,” J. Phys. D: Appl. Phys. 47 (2014).
124. M.L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A. de Heer, “Landau Level spectroscopy of ultrathin graphite layers,” Physical Review Letters 97, 266405 (2006).
125. Z. Jiang, E.A. Henriksen, L.C. Tung, Y.-J. Wang, M.E. Schwartz, M.Y. Han, P. Kim and H.L. Stormer, “Infrared spectroscopy of Landau levels in graphene,” Physical Review Letters 98, 197403 (2007).
126. M. Orlita, C. Faugeras, R. Grill, A. Wysmolek, W. Strupinski, C. Berger, W.A. de Heer, G. Martinez, and M. Potemski, “Carrier scattering from dynamical magneto-conductivity in quasineutral epitaxial graphene,” Physical Review Letters 107, 216603 (2011).
127. Z.G. Chen, Z. Shi, W. Yang, X. Lu, Y. Lai, H. Yan, F. Wang, G. Zhang, and Z. Li, “Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures,” Nature Communications 5, 4461 (2014).
128. Ievgeniia O. Nedoliuk, Sheng Hu, Andre K. Geim, and Alexey B. Kuzmenko, “Colossal infrared and terahertz magneto-optical activity in a two-dimensional Dirac material,” Nature Nano 14, 756 (2019).
129. Z. Fei, M.D. Goldflam, J.-S. Wu, S. Dai, M. Wagner, A.S. McLeod, M.K. Liu, K.W. Post, S. Zhu, G.C.A.M. Janssen, M.M. Fogler, and D.N. Basov, “Edge and Surface Plasmons in Graphene Nanoribbons,” Nano Letters 15, 8271-8276 (2015).
130. P. Li, I. Dolado, F. J. Alfaro-Mozaz, A. Yu. Nikitin, F. Casanova, L. E. Hueso, S. Vélez, and R. Hillenbrand, “Optical Nanoimaging of Hyperbolic Surface Polaritons at the Edges of van der Waals Materials,” Nano Letters 17, 228 (2017).
131. A. Y. Nikitin, P. Alonso-González, S. Vélez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, F. H. L. Koppens and R. Hillenbrand, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nature Photonics 10, 239 (2016).
132. Pierre Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Physical Review B 61, 10484 (2000).
133. M. Lorente-Crespo, G.C. Ballesteros, C. Mateo-Segura, and C. García-Meca, “Edge-Plasmon Whispering-Gallery Modes in Nanoholes” Physical Review Applied 13, 024050 (2020).
134. T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. García de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C 111, 1207 (2007).
135. A. Degiron, H. Lezec, N. Yamamoto, and T. Ebbe- sen, “Optical transmission properties of a single subwave- length aperture in a real metal,” Opt. Commun. 239, 61 (2004).
136. Na Liu, Lutz Langguth, Thomas Weiss, Jürgen Kästel, Michael Fleischhauer, Tilman Pfau and Harald Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Materials 8, 758 (2009).
137. R. Taubert, M. Hentschel, J. Kastel, and H. Gissen, “Classical Analog of Electromagnetically Induced Absorption in Plasmonics,” Nano Letters 12, 1367 (2012).
138. H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable Phonon-Induced Transparency in Bilayer Graphene Nanoribbons,” Nano Letters 14, 4581 (2014).
139. Shengxuan Xia, Xiang Zhai, Lingling Wang, and Shuangchun Wen, “Plasmonically induced transparency in in-plane isotropic and anisotropic 2D materials,” Optics Express 28, 7980 (2020).
140. Valentin Walther, Robert Johne and Thomas Pohl, “Giant optical nonlinearities from Rydberg excitons in semiconductor microcavities,” Nature Communications 9, 1309 (2018).
141. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Physical Review Letters 69, 3314 (1992).
142. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymańska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, and Le Si Dang, “Bose-Einstein condensation of exciton polaritons” Nature 443, 409 (2006).
143. I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85, 299(2013).
144. T. Byrnes, N. Y. Kim, and Y. Yamamoto, “Exciton-polariton condensates,” Nature Physics 10, 803 (2014).
145. Griffin, Allan, David W. Snoke, and Sandro Stringari, eds. “Bose-Einstein condensation,” Cambridge University Press (1996).
146. A. A. High, J. R. Leonard, A. T. Hammack, M. M. Fogler, L. V. Butov, A. V. Kavokin, K. L. Campman, and A. C. Gossard, “Spontaneous coherence in a cold exciton gas,” Nature 483, 7391 (2012).
147. D. Snoke, “Spontaneous Bose coherence of excitons and polaritons,” Science 298, 1368 (2002).
148. J. P. Eisenstein, and A. H. MacDonald, “Bose–Einstein condensation of excitons in bilayer electron systems,” Nature 432, 691 (2004).
149. H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82, 1489 (2010).
150. D.W. Snoke and J. Keeling, “The new era of polariton condensates,” Physics Today 70, 54 (2017).
151. Y. Sun, P. Wen, Y. Yoon, G. Liu, M. Steger, L. N. Pfeiffer, K. West, D. W. Snoke, and K. A. Nelson, “Bose-Einstein condensation of long-lifetime polaritons in thermal equilibrium,” Physical Review Letters 118, 016602 (2017).
152. Giovanni Lerario, Antonio Fieramosca, Fábio Barachati, Dario Ballarini, Konstantinos S. Daskalakis, Lorenzo Dominici, Milena De Giorgi, Stefan A. Maier, Giuseppe Gigli, Stéphane Kéna-Cohen and Daniele Sanvitto, “Room-temperature superfluidity in a polariton condensate,” Nature Physics 13, 837 (2013).
153. Y. Fu, H. Zhu, J. Chen, M.P. Hautzinger, X.-Y. Zhu, and S. Jin, “Metal Halide Perovskite Nanostructures for Optoelectronic Applications and the Study of Physical Properties,” Nature Reviews Materials 4, 169 (2019).
154. A. T. Hanbicki, M. Currie, G. Kioseoglou, A. L. Friedman, and B. T. Jonker, “Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2,” Sol. State. Comm. 203, 16 (2015).
155. T. Cheiwchanchamnangij and W.R.L. Lambrecht, “Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2,” Physical Review B 85, 205302 (2012).
156. A. Ramasubramaniam, “Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides,” Physical Review B, 86, 115409 (2012).
157. H.-P. Komsa and A.V. Krasheninnikov, “Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles,” Physical Review B 86, 241201 (2012).
158. Y. Liang, S. Huang, R. Soklaski, and L. Yang, “Quasiparticle band-edge energy and band offsets of monolayer of molybdenum and tungsten chalcogenides,” Applied Physics Letters 103, 042106 (2013).
159. K. He, N. Kumar, L. Zhao, Z. Wang, K.F. Mak, H. Zhao, and J. Shan, “Tightly Bound Excitons in Monolayer WSe2,” Physical Review Letters 113, 026803 (2014).
160. Z. Ye, T. Cao, K. O׳Brien, H. Zhu, X. Yin, Y. Wang, S.G. Louie, and X. Zhang, “Probing excitonic dark states in single-layer tungsten disulphide,” Nature 513, 214 (2014).
161. K. Yao, A. Yan, S. Kahn, A. Suslu, Y. Liang, E.S. Barnard, S. Tongay, A. Zettl, N.J. Borys, and P.J. Schuck, “Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer MoS2,” Physical Review Letters 119, 087401 (2017).
162. H. Min, R. Bistritzer, J. Su and A.H. MacDonald, “Room-temperature superfluidity in graphene bilayers” Physical Review B 78, 121401 (2008).
163. M.M. Fogler, L.V. Butov, and K.S. Novoselov, “High-temperature superfluidity with indirect excitons in van der Waals heterostructures” Nature Communications 5, 4555 (2014).
164. F.-C. Wu, F. Xue, and A.H. MacDonald, “Theory of two-dimensional spatially indirect equilibrium exciton condensates,” Physical Review B 92, 165121 (2015).
165. A. V. Nalitov, H. Sigurdsson, S. Morina, Y. S. Krivosenko, I. V. Iorsh, Y. G. Rubo, A. V. Kavokin, and I. A. Shelykh, “Optically trapped polariton condensates as semiclassical time crystals,” Physical Review A 99, 033830 (2019).
166. M.D. Fraser, S. Hofling, and Y. Yamamoto, “Physics and applications of exciton-polariton lasers,” Nature Materials 15, 1049 (2016).
167. Antonio Gianfrate, Lorenzo Dominici, Oksana Voronych, Michał Matuszewski, Magdalena Stobińska, Dario Ballarini, Milena De Giorgi, Giuseppe Gigli and Daniele Sanvitto, “Superluminal X-waves in a polariton quantum fluid,” Light: Science & Applications 7, 17119 (2018).
168. A. Gabbay, Yulia Preezant, E. Cohen, B. M. Ashkinadze and L.N. Pfeffier, “Fermi Edge Polaritons in a Microcavity Containing a High-Density Two-Dimensional Electron Gas,” Physical Review Letter 99, 157402 (2007).
169. Dimitri Pimenov, Jan von Delft, Leonid Glazman, and Moshe Goldstein, “Fermi-edge exciton-polaritons in doped semiconductor microcavities with finite hole mass,” Physical Review B 96, 155310 (2017).
170. Maarten Baetena and Michiel Wouters, “Mahan polaritons and their lifetime due to hole recoil,” Eur. Phys. J. D 69, 243 (2015).
171. G. D. Mahan, “Excitons in degenerate semiconductors,” Phys. Rev. 153, 882 (1967)
172. G.D. Mahan, “Excitons in metals” Physical Review Letters 18, 448 (1967).
173. Takashi Oka, and Sota Kitamura, “Floquet Engineering of Quantum Materials,” Annual Review of Condensed Matter Physics 10, 387 (2019).
174. L.W. Clark, N. Jia, N. Schine, C. Baum, A. Georgakopoulos, and J. Simon, “Interacting Floquet polaritons,” Nature 571, 532 (2019).
175. F. Mahmood, C.-K. Chan, Z. Alpichshev, D. Gardner, Y. Lee, P.A. Lee, N. Gedik, “Selective scattering between Floquet-Bloch and Volkov states in a topological insulator,” Nature Physics 12, 306 (2016).
176. Hannes Hübener, Umberto De Giovannini, and Angel Rubio, “Phonon Driven Floquet Matter,” Nano Letters 18, 1535 (2018).
177. J.-M. Me´nard, C. Poellmann, M. Porer, U. Leierseder, E. Galopin, A. Lemaıˆtre, A. Amo, J. Bloch and R. Huber, “Revealing the dark side of a bright exciton–polariton condensate,” Nature Communications 5, 4648 (2018).
178. Zheng Sun, Jie Gu, Areg Ghazaryan, Zav Shotan, Christopher R. Considine, Michael Dollar, Biswanath Chakraborty, Xiaoze Liu, Pouyan Ghaemi, Stéphane Kéna-Cohen and Vinod M. Menon, “Optical control of room-temperature valley polaritons,” Nature Photonics 11, 491 (2017).
179. L. Vestergaard Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594 (1999).
180. Olga Kocharovskaya, Yuri Rostovtsev, and Marlan O. Scully, “Stopping Light via Hot Atoms,” Physical Review Letters 86, 628 (2001)
181. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638 (2003).
182. Simon Betzold, Marco Dusel, Oleksandr Kyriienko, Christof P. Dietrich, Sebastian Klembt, Jürgen Ohmer, Utz Fischer, Ivan A. Shelykh, Christian Schneider, and Sven Höfling, “Coherence and Interaction in Confined Room-Temperature Polariton Condensates with Frenkel Excitons,” ACS Photonics 7, 384 (2020).
183. D.G. Lidzey, D.D.C. Bradley, T. Virgili, S. Walker, and D.M. Walker, “Strong exciton–photon coupling in an organic semiconductor microcavity,” Nature 395, 53 (1998).
184. G. Lerario, A. Fieramosca, F. Barachati, D. Ballarini, K.S. Daskalakis, L. Dominici, M. De Giorgi, S.A. Maier, G. Gigli, S. Kena-Cohen, and D. Sanvitto, “Room-temperature superfluidity in a polariton condensate,” Nature Physics 13, 837 (2017).
185. J. Keeling and S. Kena-Cohen, “Bose-Einstein Condensation of Exciton-Polariton in Organic Microcavities,” Annual Review of Physical Chemistry 71, 435 (2020).
186. Stavroula Foteinopoulou, Ganga Chinna Rao Devarapu, Ganapathi S. Subramania, Sanjay Krishna and Daniel Wasserman, “Phonon-polaritonics: enabling powerful capabilities for infrared photonics,” Nanophotonics 8, 2129 (2019).
187. K.I. Kliewer, and R. Fuchs, “Optical modes of vibration in an ionic crystal slab including retardation. I. Nonradiative region,” Physical Review 144, 495 (1966).
188. A. Huber, N. Ocelic, D.V. Kazantsev, and R. Hillenbrand, “Near-field imaging of mid-infrared surface phonon polariton propagation,” Applied Physics Letters 87, 081103 (2005).
189. R. Hillenbrand, T. Taubner and F. Keilmann. “Phonon-enhanced light-matter interaction at the nanometre scale,” Nature 418, 159 (2002).
190. J. D. Caldwell, O. J. Glembocki, N. Sharac, Y. Francescato, V. Giannini, F.J. Bezares, J.P. Long, J.C. Owrutsky, I. Vurgaftman, J.G. Tischler, V.D. Wheeler, N.D. Bassim, L.M. Shirey, R. Kasica, and S.A. Maier, “Low-Loss, Extreme Sub-Diffraction Photon Confinement via Silicon Carbide Surface Phonon Polariton Nanopillar Resonators,” Nano Lett. 13, 3690 (2013).
191. T. E. Tiwald, J. A. Woolam, S. Zollner, J. Christiansen, R.B. Gregory, T. Wetteroth, S.R. Wilson, and A.R. Powell, “Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry,” Physical Review B 60, 11464 (1999).
192. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-Field Microscopy Through a SiC Superlens,” Science 313, 1595 (2006).
193. W. J. Moore and R. T. Holm. “Infrared dielectric constant of GaAs,” Journal of Applied Physics 80, 6939 (1996).
194. Francesco M. D. Pellegrino, Mikhail I. Katsnelson, and Marco Polini, “Helicons in Weyl semimetals,” Physical Review B B 92, 201407 (2015).
195. Jianhui Zhou, Hao-Ran Chang, and Di Xiao, “Plasmon mode as a detection of the chiral anomaly in Weyl semimetals,” Physical Review B 91, 035114 (2015).
196. Justin C. W. Song, and Mark S. Rudner, “Fermi arc plasmons in Weyl semimetals,” Physical Review B 96, 205443 (2017).
197. Ivan Iorsh, Gulnaz Rahmanova, and Mikhail Titov, “Plasmon-Polariton from a Helical State in a Dirac Magnet,” ACS Photonics 6, 2450 (2019).
198. J. Lin, J.P. Bathasar Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons,” Science 340, 331 (2013).
199. L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Science & Applications 2, 70 (2013).
200. J.J. Hopfield, “Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals,” Physical Review 112, 1555 (1958).
201. C.H. Henry and J.J. Hopfield, “Raman Scattering by Polaritons,” Physical Review Letters 15, 964 (1965).
202. U. Fano, “Atomic Theory of Electromagnetic Interactions in Dense Materials,” Physical Review 103, 1202 (1956).
203. K. Huang, “Lattice Vibrations and Optical Waves in Ionic Crystals,” Nature 167, 779 (1951)
204. K.B. Tolpygo, “Physical Properties of a rock salt lattice made up of deformeable ions,” Translated and reprinted from Zh. Eksp. Teor. Fiz. 20, 6, 497 (1950).
205. J.D. Caldwell, I. Vurgaftman, J.G. Tischler, O.J. Glembocki, J.C. Owrutsky, and T.L. Reinecke, “Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics,” Nature Nanotechnology 11, 9 (2016).
206. L. Wendler and R. Haupt, “Long-range surface plasmon-phonon-polaritons,” Journal of Physics C: Solid State Physics 19, 1871 (1986).
207. B Askenazi, A Vasanelli, A Delteil, Y Todorov, L C Andreani, G Beaudoin, I. Sagnes and C Sirtori, “Ultra-strong light–matter coupling for designer Reststrahlen band,” New Journal of Physics 16, 043029 (2014).
208. C. Franckié, K. Ndebeka-Bandou, J. Ohtani, and M. Faist, “Quantum model of gain in phonon-polariton lasers,” Physical Review B 97, 075402 (2018).
209. N.C. Passler, C.R. Gubbin, T.G. Folland, I. Razdolski, D.S. Katzer, D.F. Storm, M. Wolf, S. De Liberato, J.D. Caldwell, and A. Paarmann, “Strong Coupling of Epsilon-Near-Zero Phonon Polaritons in Polar Dielectric Heterostructures,” Nano Lett. 18, 4285(2018)
210. A.A. Strashko, and V.M. Agranovich, “To the theory of surface plasmon_polaritons on metals covered with resonant thin films,” Optics Communications 332, 201 (2014).
211. D.C. Ratchford, C.J. Winta, I. Chatzakis, C.T. Ellis, N.C. Passler, J. Winterstein, P. Dev, I. Razdolski, J.R. Matson, J.R. Nolen, J.G. Tischler, I. Vurgaftman, M.B. Katz, N. Nepal, M.T. Hardy, J.A. Hachtel, J.-C. Idrobo, T.L. Reinecke, A.J. Giles, D.S. Katzer, N.D. Bassim, R.M. Stroud, M. Wolf, A. Paarmann, and J.D. Caldwell, “Controlling the Infrared Dielectric Function through Atomic-Scale Heterostructures,” ACS Nano 13, 6730 (2019).
212. Evan L. Runnerstrom, Kyle P. Kelley, Thomas G. Folland, J. Ryan Nolen, Nader Engheta, Joshua D. Caldwell, and Jon-Paul Maria, “Polaritonic Hybrid-Epsilon-near-Zero Modes: Beating the Plasmonic Confinement vs Propagation-Length Trade-Off with Doped Cadmium Oxide Bilayers,” Nano Letters 19, 948 (2019).
213. Kundan Chaudhary, M. Tamagnone, M. Resaee, D. Kwabena Bediako, A. Ambrosio, P. Kim and F. Capasso, “Engineering phonon polaritons in van der Waals heterostructures to enhance in-plane optical anisotropy,” Science Advances 5, eaau7171 (2019).
214. S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M.Wagner, K.Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S-E. Zhu, P. Jarillo-Herrero, M. M. Fogler and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nature Nanotechnology 10, 682 (2015).
215. Francisco J. Bezares, Adolfo De Sanctis, J. R. M. Saavedra, Achim Woessner, Pablo Alonso-González, Iban Amenabar, Jianing Chen, Thomas H. Bointon, Siyuan Dai, Michael M. Fogler, D. N. Basov, Rainer Hillenbrand, Monica F. Craciun, F. Javier García de Abajo, Saverio Russo, and Frank H. L. Koppens, “Intrinsic Plasmon–Phonon Interactions in Highly Doped Graphene: A Near-Field Imaging Study,” Nano Letters 17, 5908 (2017).
216. Anshuman Kumar, Tony Low, Kin Hung Fung, Phaedon Avouris, and Nicholas X. Fang, “Tunable Light–Matter Interaction and the Role of Hyperbolicity in Graphene–hBN System,” Nano Letters 15, 3172 (2015).
217. A. T. Costa, P. A. D. Gonçalves, Frank H. L. Koppens, D. N. Basov, N. Asger Mortensen, and N. M. R. Peres, “Harnessing Ultra-confined Graphene Plasmons to Probe the Electrodynamics of Superconductors,” arXiv:2006.00748 (2020).
218. Hossein Dehghani, Zachary M. Raines, Victor M. Galitski, and Mohammad Hafezi, “Optical Enhancement of Superconductivity via Targeted Destruction of Charge Density Waves,” Physical Review B. 101. 195106 (2020).
219. Daniel Rodrigo, Odeta Limaj, Davide Janner, Dordaneh Etezadi, F. Javier García de Abajo, Valerio Pruneri, and Hatice Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165 (2015).
220. Marta Autore, Peining Li, Irene Dolado, Francisco J Alfaro-Mozaz, Ruben, Esteban, Ainhoa Atxabal, Fèlix Casanova, Luis E Hueso, Pablo Alonso-González, Javier Aizpurua, Alexey Y Nikitin, Saül Vélez and Rainer Hillenbrand, “Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit,” Light: Science & Applications 7, 17172 (2018).
221. Christopher R. Gubbin, Rodrigo Berte, Michael A. Meeker, Alexander J. Giles, Chase T. Ellis, Joseph G. Tischler, Virginia D. Wheeler, Stefan A. Maier, Joshua D. Caldwell and Simone De Liberato, “Hybrid longitudinal-transverse phonon polaritons,” Nature Communications 10, 1682 (2019).
222. T. G. Folland, A. Fali, S. T. White, J. R. Matson, S. Liu, N. A. Aghamiri, J. H. Edgar, R. F. Haglund Jr., Y. Abate and J. D. Caldwell, “Reconfigurable infrared hyperbolic metasurfaces using phase change materials,” Nature Communications 9, 4371 (2018).
223. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nature Photonics 7, 948 (2013).
224. J.S. Gomez-Diaz, and A. Alu, “Flatland Optics with Hyperbolic Metasurfaces,” ACS Photonics 3, 2211 (2016).
225. J.S. Gomez-Diaz, M. Tymchenko, and A. Alù, “Hyperbolic Plasmons and Topological Transitions over Uniaxial Metasurfaces,” Physics Review Letters 114, 233901 (2015).
226. J.D. Caldwell, A.V. Kretinin, Y. Chen, V. Giannini, M.M. Fogler, Y. Francescato, C.T. Ellis, J.G. Tischler, C.R. Woods, A.J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S.A. Maier, and K.S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nature Communications 5, 5221 (2014).
227. Yu Guo, W. Newman, Cristian L. Cortes, and Z. Jacob, “Applications of Hyperbolic Metamaterial Substrates,” Advances in OptoElectronics 452502, (2012).
228. C L Cortes, W Newman, S Molesky and Z Jacob “Quantum nanophotonics using hyperbolic metamaterials,” Journal of Optics 14, 063001 (2012).
229. Jingbo Sun, Natalia M. Litchinitser, and Ji Zhou, “Indefinite by Nature: From Ultraviolet to Terahertz,” ACS Photonics 1, 293 (2014).
230. Evgenii E. Narimanov and Alexander V. Kildishev, “Metamaterials Naturally hyperbolic,” Nature Photonics 9, 214 (2015).
231. S. Dai, Z. Fei, Q. Ma, A.S. Rodin, M. Wagner, A.S. McLeod, M.K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A.H. Castro Neto, A. Zetti, F. Keilmann, P. Jarillo-Herrero, M.M. Fogler, and D.N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343, 1125 (2014).
232. A.J. Giles, S. Dai, I. Vurgaftman, T. Hoffman, S. Liu, L. Lindsay, C.T. Ellis, N. Assefa, I. Chatzakis, T.L. Reinecke, J.G. Tischler, M.M. Fogler, J.H. Edgar, D.N. Basov, and J.D. Caldwell, “Ultralow-loss polaritons in isotopically pure boron nitride,” Nature Materials 17, 134 (2017).
233. J. Taboada-Gutiérrez, G. Álvarez-Pérez, J. Duan, W. Ma, K. Crowley, I. Prieto, A. Bylinkin, M. Autore, H. Volkova, K. Kimura, T. Kimura, M.-H. Berger, S. Li, Q. Bao, X.P.A. Gao, I. Errea, A.Y. Nikitin, R. Hillenbrand, J. Martin-Sanchez, and P. Alonso, Gonzalez, “Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation,” Nature Materials 19, 964 (2020).
234. Joshua D. Caldwell, Igor Aharonovich, Guillaume Cassabois, James H. Edgar, Bernard Gil and D. N. Basov, “Photonics with hexagonal boron nitride” Nature Materials Reviews.4 (8), 552 (2019).
235. A. Fali, S. T. White, T. G. Folland, M. He, N. A. Aghamiri, S. Liu, J. H. Edgar, J. D. Caldwell ,R. F. Haglund, and Y. Abate, “Refractive Index-Based Control of Hyperbolic Phonon-Polariton Propagation,” Nano Letters 7725, 9, 11 (2019). 
236. A. Ambrosio, L.A. Jauregui, S. Dai, K. Chaudhary, M. Tamagnone, M.M. Fogler, D.N. Basov, F. Capasso, P. Kim, and W.L. Wilson, “Mechanical Detection and Imaging of Hyperbolic Phonon Polaritons in Hexagonal Boron Nitride,” ACS Nano 11, 8741 (2017).
237. A. Ambrosio, M. Tamagnone, K. Chaudhary, L.A. Jauregui, P. Kim, W.L. Wilson, and F. Capasso, “Selective excitation and imaging of ultraslow phonon polaritons in thin hexagonal boron nitride crystals,” Light: Science and Applications 7, 27 (2018).
238. G. Hu, J. Shen, C. W. Qiu, A. Alù, and S. Dai, “Phonon Polaritons and Hyperbolic Response in Van Der Waals Materials,” Advanced Optical Materials, Special Issue on Polaritons in Nanomaterials, 8, 1901393 (2020).
239. S. Dai, J. Quan, G. Hu, C. W. Qiu, T. H. Tao, X. Li, and A. Alù, “Hyperbolic Phonon Polaritons in Suspended Hexagonal Boron Nitride,” Nano Letters 19, 1009(2019)
240. S. Dai, M. Tymchenko, Z. Q. Xu, T. T. Tran, Y. Yang, Q. Ma, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, I. Aharonovich, D. N. Basov, T. H. Tao, and A. Alù, “Internal Nanostructure Diagnosis with Hyperbolic Phonon Polaritons in Hexagonal Boron Nitride,” Nano Letters 18, 5205 (2018).
241. A. J. Hoffman, A. Sridhar, P.X. Braun, L. Alekseyev, S.S. Howard, K.J. Franz, L. Cheng, F.-S. Choa, D.L. Sivco, V.A. Podolskiy, E.E. Narimanov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” Journal of Applied Physics 105, 122411 (2009).
242. K. Feng, G. Harden, D.L. Sivco, and A.J. Hoffman, “Subdiffraction Confinement in All-Semiconductor Hyperbolic Metamaterial Resonators,” ACS Photonics 4, 1621 (2017).
243. D. Lu, H. Qian, K. Wang, H. Shen, F. Wei, Y. Jiang, E.E. Fullerton, P.K.L. Yu, and Z. Li, “Nanostructuring Multilayer Hyperbolic Metamaterials for Ultrafast and Bright Green InGaN Quantum Wells,” Advanced Materials 30, 15 (2018).
244. Ivan V. Iorsh, Ivan S. Mukhin, Ilya V. Shadrivov, Pavel A. Belov, and Yuri S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Physical Review B 87, 075416 (2013).
245. E. E. Narimanov, and A. V. Kildishev, “Naturally hyperbolic,” Nature Photonics, 9, 214 (2015).
246. G. Hu, A. Krasnok, Y. Mazor, C.-W. Qiu, and A. Alù, “Moiré Hyperbolic Metasurfaces,” Nano Letters 20, 3217 (2020).
247. Chong Wang, Shenyang Huang, Qiaoxia Xing, Yuangang Xie, Chaoyu Song, Fanjie Wang and Hugen Yan, “Vander Waals thin films of WTe2 for natural hyperbolic plasmonic surfaces,” Nature Communications 11, 1158 (2020).
248. E. Itai, A.J. Chaves, D.A. Rhodes, B. Frank, K. Watanabe, T. Taniguchi, H. Giessen, J.C. Hone, N.M.R. Peres, and F.H.L. Koppens, “Highly confined In-plane propagating exciton-polaritons on monolayer semiconductors,” 2D Materials, 7, 3 (2020).
249. Nicholas Riveraa, Gilles Rosolen, John D. Joannopoulosa, Ido Kaminera, and Marin Soljacic, “Making two-photon processes dominate one-photon processes using mid-IR phonon polaritons,” PNAS 114, 3607 (2017).
250. Pavel A. Belov and Yang Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Physical Review B 73, 113110 (2006).
251. Peining Li, Guangwei Hu, Irene Dolado, Mykhailo Tymchenko, Cheng-Wei Qiu, Francisco Javier Alfaro-Mozaz, Fèlix Casanova, Luis E. Hueso, Song Liu, James H. Edgar, Saül Vélez, Andrea Alu and Rainer Hillenbrand, “Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization,” Nature Communications 11, 3663 (2020).
252. S. Dai, Q. Ma, T. Andersen, A. S. Mcleod, Z. Fei, M. K. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material,” Nature Communications 6, 6963 (2015).
253. Diego Correas-Serrano, Andrea Alù, and J. Sebastian Gomez-Diaz, “Plasmon canalization and tunneling over anisotropic metasurfaces,” Physical Review B 96, 075436 (2017)
254. Peining Li, Martin Lewin, Andrey V. Kretinin, Joshua D. Caldwell, Kostya S. Novoselov, Takashi Taniguchi, Kenji Watanabe, Fabian Gaussmann and Thomas Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nature Communications 6, 7507 (2015).
255. In-Ho Lee, Mingze He, Xi Zhang, Yujie Luo, Song Liu, James H. Edgar, Ke Wang, Phaedon Avouris, Tony Low, Joshua D. Caldwell and Sang-Hyun Oh, “Image polaritons in boron nitride for extreme polariton confinement with low losses,” Nature Communications 11, 3649 (2020).
256. A. Stahl, “Polariton Structure of Interband Transitions in Semiconductors,” phys. stat. sol. (b) 94, 221 (1979).
257. Andrea Tomadin, Francisco Guinea, and Marco Polini, “Generation and morphing of plasmons in graphene superlattices,” Physical Review B 90, 161406 (2014).
258. G. X. Ni, H. Wang, J. S. Wu, Z. Fei, M. D. Goldflam, F. Keilmann, B. Özyilmaz, A. H. Castro Neto, X. M. Xie, M. M. Fogler, and D. N. Basov, “Plasmons in graphene moiré superlattices,” Nature Materials 14, 1217 (2015).
259. N.C.H Hesp, I. Torre, D. R-Legrian, P. Novelli, Y. Cao, S. Carr, S. Fang, P. Stepanov, D. Barcons-Ruiz, H. Herzig-Sheinfux, K. Watanabe, T. Taniguchi, D.K. Efetov, E. Kaxiras, P. Jarillo-Herrero, M. Polini, and F.H.L. Koppens, “Collective excitations in twisted bilayer graphene close to the magic angle,” arXiv:1910.07893 (2019).
260. P. Novelli, I. Torre, F.H.L. Koppens, F. Taddei, and M. Polini, “Optical and plasmonic properties of twisted bilayer graphene: Impact of interlayer tunneling asymmetry and ground-state charge inhomogeneity,” arXiv:2005.09529 (2020).
261. D.N. Basov, R. Liang, D.A. Bonn, W.N. Hardy, B. Dabrowski, M. Quijada, D.B. Tanner, J.P. Rice, D.M. Ginsberg, and T. Timusk, “In-plane anisotropy of the penetration depth in YBa2Cu3O7-x and YBa2Cu4O8 superconductors,” Physical Review Letters 74, 598 (1995).
262. P. A. Wolff, “Plasma-wave instability in narrow-gap semiconductors,” Physical Review Letters 24, 266 (1970).
263. Tony Low, Pai-Yen Chen, and D. N. Basov “Superluminal plasmons with resonant gain in population inverted bilayer graphene” Phys. Rev. B 98, 041403(R) (2018)
264. Dimitri Dini, Rudeger Kohler, Alessandro Tredicucci, Giorgio Biasiol, and Lucia Sorba, “Microcavity Polariton Splitting of Intersubband Transitions,” Physical Review Letters 90, 116401 (2003).
265. Dario Ballarini and Simone De Liberato, “Polaritonics: from microcavities to sub-wavelength confinement,” Nanophotonics 8, 641 (2019).
266. J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, and M. A. Belkin, “Giant Nonlinear Response from Plasmonic Metasurfaces Coupled to Intersubband Transitions,” Nature 511, 65, (2014).
267. Y. Laplace, S. Fernandez-Pena, S. Gariglio, J. M. Triscone, and A. Cavalleri, “Proposed cavity Josephson plasmonics with complex-oxide heterostructures,” Physical Review B 93, 075152 (2016).
268. D.N. Basov and T. Timusk, “Electrodynamics of high-Tc superconductors,” Reviews of Modern Physics 77, 721 (2005).
269. S. Rajasekaran, E. Casandruc, Y. Laplace, D. Nicoletti, G. D. Gu, S. R. Clark, D. Jaksch and A. Cavalleri, “Parametric amplification of a superconducting plasma wave,” Nature Physics 12, 1012 (2016).
270 A. Charnukha, A. Sternbach, H. T. Stinson, R. Schlereth, C. Brüne, L. W. Molenkamp, and D. N. Basov. “Ultrafast nonlocal collective dynamics of Kane plasmon-polaritons in a narrow-gap semiconductor,” Science Advances 5, eaau9956 (2019).
271. X. Li, M. Bamba, Q. Zhang, S. Fallahi, G.C. Gardner, W. Gao, K. Yoshioka, M.J. Manfra, and J. Kono, “Vacuum Bloch–Siegert shift in Landau polaritons with ultra-high cooperativity,” Nature Photonics 12, 324 (2018).
272. Gian L. Paravicini-Bagliani, Felice Appugliese, Eli Richter, Federico Valmorra, Janine Keller, Mattias Beck, Nicola Bartolo, Clemens Rössler, Thomas Ihn, Klaus Ensslin, Cristiano Ciuti, Giacomo Scalari and Jérôme Faist, “Magneto-transport controlled by Landau polariton states,” Nature Physics 15, 186 (2019).
273. Zhiwen Shi, Xiaoping Hong, Hans A. Bechtel, Bo Zeng, Michael C. Martin, Kenji Watanabe, Takashi Taniguchi, Yuen-Ron Shen and Feng Wang, “Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes,” Nature Photonics 9, 515 (2015).
274. J.M. Luttinger, “An exactly soluble model of a many-fermion system,” Journal of Mathematical Physics 4, 1154 (1963).
275. F.D.M. Haldane, “Luttinger liquid theory’ of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas,” Journal of Physics C: Solid State Physics 14, 2585 (1981).
276. Sheng Wang, Sihan Zhao, Zhiwen Shi, Fanqi Wu, Zhiyuan Zhao, Lili Jiang, Kenji Watanabe, Takashi Taniguchi, Alex Zettl, Chongwu Zhou, and Feng Wang, “Nonlinear Luttinger liquid plasmons in semiconducting single-walled carbon nanotubes,” Nature Materials 19, 986 (2020).
277. E. Camley, “Long-Wavelength Surface Spin Waves on Antiferromagnets,” Physical Review Letters 45, 283 (1980).
278. R.E. Camley and D.L. Millis, “Surface polaritons on uniaxial antiferromagnets,” Physical Review B 26, 1280 (1982).
279. Rair Macêdo and Robert E. Camley, “Engineering terahertz surface magnon-polaritons in hyperbolic antiferromagnets,” Physical Review B 99, 014437 (2019).
280. Jamison Sloan, Nicholas Rivera, John D. Joannopoulos, Ido Kaminer, and Marin Soljaˇci, “Controlling spins with surface magnon polaritons,” Physical Review B 100, 235453 (2019).
281. Sergey S. Kruk, Zi Jing Wong, Ekaterina Pshenay-Severin, Kevin O’Brien, Dragomir N. Neshev, Yuri S. Kivshar and Xiang Zhang, “Magnetic hyperbolic optical metamaterials,” Nature Communications 7, 11329 (2016).
282. Prasahnt Sivarajah, Andreas Steinbacher, Blake Dastrup, Jian Lu, Maolin Xiang, Wei Ren, Stanislav Kamba, Shixun Cao, and Keith A. Nelson, “THz-frequency magnon-phonon-polaritons in the collective strong-coupling regime,” Journal of Applied Physics 125, 213103 (2019).
283. J. J. Brion, R. F. Wallis, A. Hartstein and E. Burstein, “Theory of Surface Magnetoplasmons in Semiconductors,” Physical Review Letters 28, 1455 (1972).
284. Bin Hu , Ying Zhang and Qi Jie Wang, “Surface magneto plasmons and their applications in the infrared frequencies,” Nanophotonics 4, 4 (2015).
285. Zhongqu Long, Yongrui Wang, Maria Erukhimova, Mikhail Tokman, and Alexey Belyanin, “Magnetopolaritons in Weyl Semimetals in a Strong Magnetic Field,” Physical Review Letters 120, 037403 (2018).
286. R. L. Stamps and R. E. Camley, “Focusing of magnetoplasmon polaritons,” Physical Review B 31, 4924 (1985).
287. Mark S. Rudner and Justin C. W. Song, “Self-induced Berry flux and spontaneous non-equilibrium magnetism,” Nature Physics 15, 1017 (2019).
288. A.K. Geim and I.V. Grigorieva, “Van der Waals heterostructures” Nature 499, 419(2013)
289. K.S. Novoselov, A. Mishchenko, A. Carvalho and A.H. Castro Neto, “2D materials and van der Waals heterostructures” Science 353, 6298 (2016).
290. A. Castellanos-Gomez, “Why all the fuss about 2D semiconductors?” Nature Photonics 10, 202 (2016).
291. H. Schmidt, T. Ludtke, P. Barthold, E. McCann, V. I. Fal’ko and R. J. Haug, “Tunable graphene system with two decoupled monolayers” Applied Physics Letters 93, 172108 (2008).
292. G. Li, A. Luican, J.M.B. Lopes dos Santos, A.H. Castro Neto, A. Reina, J. Kong and E.Y. Andrei, “Observation of Van Hove singularities in twisted graphene layers” Nature Physics 6, 109 (2010).
293. J. D. Sanchez-Yamagishi, T. Taychatanapat, K. Watanabe, T. Taniguchi, A. Yacoby and P. Jarillo-Herrero, “Quantum Hall Effect, Screening, and Layer-Polarized Insulating States in Twisted Bilayer Graphene” Physical Review Letters 108, 076601 (2012).
294. D.S. Lee, C. Riedl, T. Beringer, A. H. Castro Neto, K. von Klitzing, U. Starke and J. H. Smet, “Quantum Hall effect in twisted bilayer graphene” Physics Review Letters 107, 216602 (2011).
295. J.D. Sanchez-Yamagishi, J.Y. Luo, A.F. Young, B. Hunt, K. Watanabe, T. Taniguchi, R.C. Ashoori and P. Jarillo-Herrero, “Helical edge states and fractional quantum Hall effect in a graphene electron–hole bilayer” Nature Nanotechnology 12, 118 (2017).
296. Y. Cao, J.Y. Luo, V. Fatemi, S. Fang, J.D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras and P. Jarillo-Herrero, “Superlattice-Induced Insulating States and Valley-Protected Orbits in Twisted Bilayer Graphene” Physical Review Letters 117, 116804 (2016).
297. K. Liu, L.M. Zhang, T. Cao, C.H. Jin, D. Qiu, Q. Zhou, A. Zettl, P. Yang, S.G. Louie and F. Wang, “Evolution of interlayer coupling in twisted molybdenum disulfide bilayers” Nature Communications 5, 4966 (2014).
298. M. Barbier, P. Vasilopoulos and F.M. Peeters, “Extra Dirac points in the energy spectrum for superlattices on single-layer graphene” Physical Review B 81, 075438 (2010).
299. C.R. Woods, L. Britnell, A. Eckmann, R.S. Ma, J.C. Lu, H.M. Guo, X. Lin, G.L. Yu, Y. Cao, R.V. Gorbachev, A.V. Kretinin, J. Park, L.A. Ponomarenko, M.I. Katsnelson, Y.N. Gornostyrev, K. Watanabe, T. Taniguchi, C. Casiraghi, H.-J. Gao, A.K. Geim and K.S. Novoselov, “Commensurate-incommensurate transition in graphene on hexagonal boron nitride” Nature Physics 10, 451 (2014).
300. B. Hunt, J.D. Sanchez-Yamagishi, A.F. Young, M. Yankowitz, B.J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero and R.C. Ashoori, “Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure” Science 340, 6139 (2013).
301. M. Yankowitz, J. Xue, D. Cormode, J.D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, P. Jacquod and B.J. LeRoy, “Emergence of superlattice Dirac points in graphene on hexagonal boron nitride” Nat. Phys. 8, 382 (2012)
302. Yuan Cao, Valla Fatemi, Shiang Fang, Kenji Watanabe, Takashi Taniguchi, Efthimios Kaxiras and Pablo Jarillo-Herrero, “Unconventional superconductivity in magic-angle graphene superlattices” Nature 556, 43 (2018).
303. D. M. Kennes, L. Xian, M. Claassen, and A. Rubio, “One-dimensional flat bands in twisted bilayer germanium selenide,” Nature Communications 11,1124, (2020).
304. Lede Xian, Dante M. Kennes, Nicolas Tancogne-Dejean, Massimo Altarelli, and Angel Rubio, “Multiflat Bands and Strong Correlations in Twisted Bilayer Boron Nitride: Doping-Induced Correlated Insulator and Superconductor,” Nano Letters 19, 4934 (2019).
305. D. M. Kennes M. Claassen, L. Xian, A. Georges, A. J. Millis, J. Hone, C. R. Dean, D. N. Basov, A. Pasupathy, and A. Rubio,” Moiré heterostructures: a condensed matter quantum simulator”, to appear in Nature Physics (2020).
306. X. Chen, X. Fan, L. Li, N. Zhang, T. Guo, S. Xu, H. Xu, D. Wang, H. Zhang, A.S. McLeod, Z. Luo, Q. Lu, A. Millis, D.N. Basov, M. Liu, and C. Zeng, “Moiré engineering of electronic phenomena in correlated oxides,” Nature Physics, 16, 631 (2020).
307. K.L. Seyler, P. Rivera, H. Yu. N.P. Wilson, E.L. Ray, D.G. Mandrus, J. Yan, W. Yao, and X. Xu, “Signatures of moire-trapped valley excitons in MoSe 2 /WSe2 heterobilayers,” Nature 567, 66 (2019).
308. Yuan, B. Zheng, J. Kuntsmann, T. Brumme, A. Beata Kuc, C. Ma, S. Deng, D. Blach, A. Pan, and L. Huang, “Twist-angle-dependent interlayer exciton diffusion in WS2-WSe2 heterobilayers,” Nature Materials 19, 617 (2020).
309. Weijie Li, Xin Lu, Sudipta Dubey, Luka Devenica and Ajit Srivastava, “Dipolar interactions between localized interlayer excitons in van der Waals heterostructures,” Nature Materials 19, 624 (2020).
310. Y. Bai, L. Zhou, J. Wang, W. Wu, L.J. McGilly, D. Halbertal, C.F. Bowen Lo, F. Liu, J. Ardelean, P. Rivera, N.R. Finney, X.-C. Yang, D.N. Basov, W. Yao, X. Xu, J. Hone, A.N. Pasupathy, and X.-Y. Zhu, “Excitons in strain-induced one- dimensional moire potentials at transition metal dichalcogenide heterojunctions,” Nature Materials 19, 1068 (2020).
311. S. S. Sunku, G. X. Ni, B. Y. Jiang, H. Yoo, A. Sternbach, A. S. McLeod, T. Stauber, L. Xiong, T. Taniguchi, K. Watanabe, P. Kim, M. M. Fogler, and D. N. Basov” Photonic crystals for nano-light in moiré graphene superlattices” Science 362, 1153 (2018).
312. G.X. Ni, H. Wang, B.-Y. Jiang, L.X. Chen, Y. Du, Z.Y. Sun, M.D. Goldflam, A.J. Frenzel, X.M. Xie, M.M. Fogler and D.N. Basov “Soliton superlattices in twisted hexagonal boron nitride,” Nature Communications 10, 4360 (2019).
313. Mingyuan Chen, Xiao Lin, Thao H. Dinh, Zhiren Zheng, Jialiang Shen, Qiong Ma, Hongsheng Chen, Pablo Jarillo-Herrero and Siyuan Dai, “Configurable phonon polaritons in twisted α-MoO3,” Nature Materials (2020).
314. Guangwei Hu, Qingdong Ou, Guangyuan Si, Yingjie Wu, Jing Wu, Zhigao Dai, Alex Krasnok, Yarden Mazor, Qing Zhang, Qiaoliang Bao, Cheng-Wei Qiu and Andrea Alù, “Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers,” Nature 582, 209 (2020).
315. Felipe Herrera and Jeffrey Owrutsky, “Molecular polaritons for controlling chemistry with quantum optics,” Journal of Chemical Physics 152, 100902 (2020).
316. J. P. Long and B.K. Simpkins, “Coherent Coupling between a Molecular Vibration and Fabry–Perot Optical Cavity to Give Hybridized States in the Strong Coupling Limit,” ACS Photonics 2, 130 (2015)
317. Bo Xiang, Raphael F. Ribeiro, Matthew Du, Liying Chen, Zimo Yang, Jiaxi Wang, Joel Yuen-Zhou, and Wei Xiong, “Intermolecular vibrational energy transfer enabled by microcavity strong light–matter coupling,” Science 368, 665 (2020).
318. E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nature Materials 14, 1123(2015)
319. R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127 (2016).
320. Bo Xiang, Raphael F. Ribeiro, Yingmin Li, Adam D. Dunkelberger, Blake B. Simpkins, Joel Yuen-Zhou, and Wei Xiong, “Manipulating optical nonlinearities of molecular polaritons by delocalization,” Science Advances 5, eaax5196 (2019).
321. H. Memmi, O. Benson, S. Sadofev, and S. Kalusniak, “Strong Coupling between Surface Plasmon Polaritons and Molecular Vibrations,” Physical Review Letters 118, 126802 (2017).
322. L. Henriet, Z. Ristivojevic, P.P Orth, and K. Le Hur, “Quantum dynamics of the driven and dissipative Rabi model,” Physical Review A 90, 023820 (2014).
323. Sebastian Schmidt and Jens Koch, “Circuit QED lattices Towards quantum simulation with superconducting circuits,” Ann. Phys. (Berlin) 525, 395 (2013).
324. M.Kiffner, Jonathan Coulthard, Frank Schlawin, Arzhang Ardavan and Dieter Jaksch “Mott polaritons in cavity-coupled quantum materials,” N.J. of Phys 21, 073066 (2019).
325. W.L. Faust and C. H. Henry, “Mixing of Visible and Near-Resonance Infrared Light in GaP,” Physical Review Letters 17, 1265 (1966).
326. Scott A. Holmstrom, T. Stievater, M.W. Pruessner, W.S. Rabinovich, S. Kanakaraju, C.J.K. Richardson, and J.B. Khurgin, “Guided-mode phonon-polaritons in suspended waveguides,” Physical Review B 86, 165120 (2012).
327. Joshua D. Caldwell, Lucas Lindsay, Vincenzo Giannini, Igor Vurgaftman, Thomas L. Reinecke, Stefan A. Maier and Orest J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, (2015).
328. S. Vassant, F. Marquier, J.J. Greffet, F. Pardo, and J.L. Pelouard, “Tailoring GaAs terahertz radiative properties with surface phonons polaritons,” Applied Physics Letters 97, 161101 (2010).
329. P. C. M. Planken, L. D. Noordam, T. M. Kermis, and A. Lagendijk, “Femtosecond time-resolved study of the generation and propagation of phonon polaritons in LiNbo,” Physical Review B 45,13 (1992).
330. T. Feurer, Nikolay S. Stoyanov, David W. Ward, Joshua C. Vaughan, Eric R. Statz, and Keith A. Nelson, “Terahertz Polaritonics,” Annual Review of Materials Research 37, 317 (2007).
331. Seiji Kojima, Naoki Tsumura and Mitsuo Wada Takeda, “Far-infrared phonon-polariton dispersion probed by terahertz time-domain spectroscopy,” Physical Review B 67, 035102 (2003).
332. H. J. Bakker, S. Hunsche, and H. Kurz, “Coherent phonon polaritons as probes of anharmonic phonons in ferroelectrics,” Reviews of Modern Physics 70, 2 (1998).
333. K.-L. Yeh, M.C. Hoffman, J. Hebling, and K.A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Applied Physics Letters 90, 171121 (2007).
334. A. J. Huber, N. Ocelic, and R. Hillenbrand, “Local excitation and interference of surface phonon polaritons studied by near-field infrared microscopy,” Journal of Microscopy 229, 389 (2008).
335. A. J. Huber, R. Hillenbrand, B. Deutsch, and L. Novotny, “Focusing of surface phonon polaritons,” Applied Physics Letters 92, 203104 (2008).
336. A.A. Goyyadinov, A. Konecna, A. Chuvilin, S. Velez, I. Dolado, A.Y. Nikitin, S. Lopatin, F. Casanova, L.E. Hueso, J. Aizpurua and R. Hillenbrand, “Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope,” Nature Communications 8, 95 (2017).
337. D.-Z. A. Chen, A. Narayanaswamy, and G. Chen, “Surface phonon-polariton mediated thermal conductivity enhancement of amorphous thin films,” Physical Review B 72, 155435 (2005).
338. Prashanth S. Venkataram, Jan Hermann, Alexandre Tkatchenko, and Alejandro W. Rodriguez, “Phonon-Polariton Mediated Thermal Radiation and Heat Transfer among Molecules and Macroscopic Bodies: Nonlocal Electromagnetic Response at Mesoscopic Scales,” Physical Review Letters 121, 045901 (2018).
339. David G. Cahill, Paul V. Braun, Gang Chen, David R. Clarke, Shanhui Fan, Kenneth E. Goodson, Pawel Keblinski, William P. King, Gerald D. Mahan, Arun Majumdar, Humphrey J. Maris, Simon R. Phillpot, Eric Pop, and Li Shi, “Nanoscale thermal transport,” Applied Physics Review 1, 011305 (2014).
340. Kyeongtae Kim, Bai Song, Víctor Fernández-Hurtado, Woochul Lee, Wonho Jeong, Longji Cui, Dakotah Thompson, Johannes Feist, M. T. Homer Reid, Francisco J. García-Vidal, Juan Carlos Cuevas, Edgar Meyhofer and Pramod Reddy, “Radiative heat transfer in the extreme near field,” Nature 528, 387 (2015).
341. Dakotah Thompson, Linxiao Zhu, Rohith Mittapally, Seid Sadat, Zhen Xing, Patrick McArdle, M. Mumtaz Qazilbash, Pramod Reddy and Edgar Meyhofe, “Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit,” Nature 561, 216 (2018).
342. Zebo Zheng, Jianing Chen, Yu Wang, Ximiao Wang, Xiaobo Chen, Pengyi Liu, Jianbin Xu, Weiguang Xie, Huanjun Chen, Shaozhi Deng, and Ningsheng Xu, “Highly Confined and Tunable Hyperbolic Phonon Polaritons in Van Der Waals Semiconducting Transition Metal Oxides,” Advanced Materials 30, 1705318 (2018).
343. W. Ma, P. Alonso-Gonzalez, S. Li, A.Y. Nikitin, J. Yuan, J. Martin-Sanchez, J. Taboada-Gutierrez, I. Amenabar, P. Li, S. Velez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S.-T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562, 557 (2018).
344. Z. Zheng, N. Xu, S. L. Oscurato, et al., “A mid-infrared biaxial hyperbolic van der Waals crystal,” Science Advances 5, eaav8690, (2019).
345. Peining Li, Irene Dolado, Francisco Javier Alfaro-Mozaz, Fèlix Casanova, Luis E. Hueso, Song Liu, James H. Edgar, Alexey Y. Nikitin, Saül Vélez, and Rainer Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359, 892 (2018).
346. A. Cartella, T. F. Nova, M. Fechner, R. Merlin, and A. Cavalleri, “Parametric amplification of optical phonons,” PNAS 115, 12148 (2018).
347. Siyuan Dai, Fang Wenjing, Nicholas Rivera, Yijing Stehle, Bor-Yuan Jiang, Jialiang Shen, Roland Yingjie Tay, Christopher J. Ciccarino, Qiong Ma, Daniel Rodan-Legrain, Pablo Jarillo-Herrero, Edwin Hang Tong Teo, Michael M. Fogler, Prineha Narang, Jing Kong, and Dimitri N. Basov. “Phonon Polaritons in Monolayers of Hexagonal Boron Nitride” Advanced Materials 31, 1806603 (2019).
348. A.V..Zayats, I. Igor Smolyaninov and Alexei A. Maradudin,, “Nano-optics of surface plasmon polaritons,” Physics Report 408, 131 (2005).
349. S.A. Maier, “Plasmonics: Fundamentals and Applications,” (Springer, 2007).
350. D.K. Gramotney and S.I. Bozhevolnvi, “Plasmonics beyond the diffraction limit,” Nature Photonics 4, 83 (2010).
351. H.A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Materials 9, 205 (2010).
352. P. Berini and I. De Leon, “Surface plasmon–polariton amplifiers and lasers,” Nature Photonics 6, 16 (2012).
353. S.I. Bogdanov, A. Boltasseva, and V.M. Shalev, “Overcoming quantum decoherence with plasmonics,” Science 364, 532 (2019).
354. J. Lee, S. Jung, P. Y. Chen, F. Lu, F. Demmerle, M. C. Amann, A. Alù, and M. A. Belkin, “Ultrafast Electrically-Tunable Polaritonic Metasurfaces,” Advanced Optical Materials 2, 1057 (2014).
355. M. Kauranen and A.V. Zayats, “Nonlinear plasmonics,” Nature Photonics 6, 737(2012)
356. J. Lee, N. Nookala, J. S. Gomez-Diaz, M. Tymchenko, F. Demmerle, G. Boehm, K. Lai, G. Shvets, M. C. Amann, A. Alù, and M. A. Belkin, “Ultrathin Gradient Nonlinear Metasurfaces with Giant Nonlinear Response,” Optica 3, 283 (2016).
357. M. Tymchenko, J. S. Gomez-Diaz, J. Lee, M. A. Belkin, and A. Alù, “Gradient Nonlinear Pancharatnam-Berry Metasurfaces,” Physical Review Letters, 115, 207403 (2015).
358. Z. Jacob, and V.M. Shalev, “Plasmonics Goes Quantum,” Science 334, 463 (2011).
359. M.S. Tame, K.R. McEnery, S.K. Ozdemir, J. Lee, S.A. Maier, and M.S. Kim, “Quantum plasmonics,” Nature Physics 9, 329 (2013).
360. S.I. Bozhevolnvi and J.B. Khurgin, “The case for quantum plasmonics,” Nature Photonics 11, 398 (2017).
361. J.S. Fakonas, A. Mitskovets, and H.A. Atwater, “Path entanglement of surface plasmons,” New J. Phys. 17, 023002 (2015).
362. M.-C. Dheur, F. Devaux, T.W. Ebbesen, A. Baron, J.-C. Rodier, J.-P. Hugonin, P. Lalanne, J.-J. Greffet, G. Messin and F. Marquier, “Single-plasmon interferences,” Science Advances 2, e1501574 (2016).
363. Martin Wagner, Alexander S. McLeod, Scott J. Maddox, Zhe Fei, Mengkun Liu, Richard D. Averitt, Michael M. Fogler, Seth R. Bank, Fritz Keilmann, and D. N. Basov, “Ultrafast Dynamics of Surface Plasmons in InAs by Time-Resolved Infrared Nanospectroscopy,” Nano Letters 14, 4529 (2014).
364. K.F. MacDonald, Z.L. Samson, M.I. Stockman and N.I. Zheludev, “Ultrafast active plasmonics,” Nature Photonics 3, 55 (2009).
365. M. Eisele, T.L. Cocker, M.A. Huber, M. Plank, L. Viti, D. Ercolani, L. Sorba, M.S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nature Photonics 8, 841 (2014).
366. Markus A. Huber, Fabian Mooshammer, Markus Plankl, Leonardo Viti, Fabian Sandner, Lukas Z. Kastner, Tobias Frank, Jaroslav Fabian, Miriam S. Vitiello, Tyler L. Cocker and Rupert Huber, “Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures,” Nature Nanotechnology 12, 207 (2017).
367. Ziheng Yao, Suheng Xu, Debo Hu, Xinzhong Chen, Qing Dai, and Mengkun Liu, “Nanoimaging and Nanospectroscopy of Polaritons with Time Resolved s-SNOM,” Advanced Optical Materials 8, 1901042 (2020).
368. A V Krasavin, A.V. Zayats and N.I. Zheludev, “Active control of surface plasmon–polariton waves,” Journal of Optics A: Pure Applied Optics 7, S85 (2005).
369. J. Shi, M. H. Lin, I. T. Chen, N. Mohammadi Estakhri, X. Q. Zhang, Y. Wang, H. Y. Chen, C. A. Chen, C. K. Shih, A. Alù, X. Li, Y. H. Lee, and S. Gwo, “Cascaded Exciton Energy Transfer in a Monolayer Semiconductor Lateral Heterostructure Assisted by Surface Plasmon Polariton,” Nature Communications, 8, 35 (2017).
370. Bumki Min, Eric Ostby, Volker Sorger, Erick Ulin-Avila, Lan Yang, Xiang Zhang and Kerry Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455 (2009).
371. Alexandra Boltasseva and Harry A. Atwater, “Low-Loss Plasmonic Metamaterials,” Science 331, 290 (2011).
372. Gururaj V. Naik and Vladimir M. Shalaev, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Advanced Materials 25, 3264 (2013).
373. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nature Photonics 8, 899 (2014).
374. Felipe H. da Jornada, Lede Xian, Angel Rubio, and Steven G. Louie, “Universal slow plasmons and giant field enhancement in atomically thin quasi-twodimensional metals,” Nature Communications 11, 1013 (2020).
375. E.H. Hwang, and S. Das Sarma, “Plasmon modes of spatially separated doublelayer Graphene,” Physical Review B 80, 205405 (2009).
376. A. Principi, Reza Asgari, and Marco Polini, “Acoustic plasmons and composite hole-acoustic plasmon satellite bands in graphene on a metal gate,” Solid State Communications 151, 1627 (2011).
377. R.E.V. Profumo, R. Asgari, M. Polini, and A.H. MacDonald, “Double-layer graphene and topological insulator thin-film plasmons,” Physical Review B 85, 085443 (2012).
378. S. Chen, M. Autore, J. Li, P. Li, P. Alonso-Gonzalez, Z. Yang, L. Martin-Moreno, R. Hillenbrand, and A.Y. Nikitin, “Acoustic graphene plasmon nanoresonators for field-enhanced infrared molecular spectroscopy,” ACS Photonics 4, 3089 (2017).
379. T. Stauber and G. Gomez-Santos, “Plasmons in layered structures including graphene,” New Journal of Physics 14, 105018 (2012).
380. In-Ho Lee, Daehan Yoo, Phaedon Avouris, Tony Low and Sang-Hyun Oh, “Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy, “Nature Nanotechnology 14, 313 (2019).
381. P. Alonso-Gonzalez, A.Y. Nikitin, Y. Gao, A. Woessner, M.B. Lundenberg, A. Principi, N. Forcellini, W. Yan, S. Velez, A.J. Huber, K. Watanabe, T. Taniguchi, F. Casanova, L.E. Hueso, M. Polini, J. Hone, F.H.L. Koppens, and R. Hillenbrand, “Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy,” Nature Nanotechnology 12, 31 (2017).
382. M.B. Lundeberg, Y. Gao, R. Asgari, C. Tan, B.V. Duppen, M. Autore, P. Alonso-Gonzalez, A. Woessner, K. Watanabe, T. Taniguchi, R. Hillenbrand, J. Hone, M. Polini, and F.H.L. Koppens, “Tuning quantum nonlocal effects in graphene plasmonics,” Science 347, 187 (2017).
383. J.B. Pendry, L. Martin-Moreno, and F.J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305, 847 (2014).
384. M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264 (1979).
385. Alexander Minovich, Angela E. Klein, Norik Janunts, Thomas Pertsch, Dragomir N. Neshev, and Yuri S. Kivshar, “Generation and Near-Field Imaging of Airy Surface Plasmons,” Physical Review Letters 107, 116802 (2011).
386. Mario Hentschel, Martin Schäferling, Xiaoyang Duan, Harald Giessen, Na Liu, “Chiral plasmonics,” Science Advances 3, e1602735 (2017).
387. T. Stauber, T. Low, and G. Gómez-Santos, “Chiral Response of Twisted Bilayer Graphene,” Physical Review Letters 120, 046801 (2018).
388. Dmitri N. Basov and Michael M. Fogler, “Quantum Materials: The quest for ultrafast plasmonics,” Nature Nanotechnology 12, 187 (2017).
389. P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nature Photonics 7, 128 (2013).
390. N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander and N. J. Halas, “Plexcitonic Nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate Complexes,” Nano Letters 8, 3481 (2008).
391. N.T. Fofang, N.K. Grady, Z. Fan, A.O. Govorov, and N.J. Halas, “Plexciton Dynamics: Exciton−Plasmon Coupling in a J-Aggregate−Au Nanoshell Complex Provides a Mechanism for Nonlinearity”. Nano Letters 11, 1556 (2011).
392. A. Manjavacas, F. J. Garcia de Abajo and P. Nordlander, “Quantum Plexcitonics: Strongly Interacting Plasmons and Excitons,” Nano Letters 11, 2318 (2011).
393. Joel Yuen-Zhou, Semion K. Saikin, Tony Zhu, Mehmet C. Onbasli, Caroline A. Ross, Vladimir Bulovic and Marc A. Baldo, “Plexciton Dirac points and topological modes,” Nature Communications 7, 11783 (2016).
394. Ajay P. Manuel, Aaron Kirkey, Najia Mahdi and Karthik Shankar, “Plexcitonics – fundamental principles and optoelectronic applications,” Journal of Materials Chemistry C 7, (2019).
395. K. Wu, W.E. Rodriguez-Cordoba, Y. Yang, and T. Lian, “Plasmon-Induced Hot Electron Transfer from the Au Tip to CdS Rod in CdS-Au Nanoheterostructures,” Nano Letters 13, 5255 (2013).
396. P. Torma and W.L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Reports on Progress in Physics 78, 013901 (2015).
397. P. A. D. Goncalves, L. P. Bertelsen, S. Xiao and N. Mortensen, “Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces,” Physical Review B 97, 041402 (2018).
398. Vasilios Karanikolas, Ioannis Thanopulos, and Emmanuel Paspalakis, “Strong interaction of quantum emitters with a WS2 layer enhanced by a gold substrate,” Optics Letters 44, 2049 (2019).
399. Thibault Chervy, Stefano Azzini, Etienne Lorchat, Shaojun Wang, Yuri Gorodetski, James A. Hutchison, Stéphane Berciaud, Thomas W. Ebbesen, and Cyriaque Genet, “Room Temperature Chiral Coupling of Valley Excitons with Spin-Momentum Locked Surface Plasmons” ACS Photonics 5, 1281 (2018).
400. H. Groß, J. M. Hamm, T. Tufarelli, O. Hess, and B. Hecht, “Near-field strong coupling of single quantum dots,” Science Advances 4, eaar4906 (2018).
401. Molly A. May, David Fialkow, Tong Wu, Kyoung-Duck Park, Haixu Leng, Jaron A. Kropp, Theodosia Gougousi, Philippe Lalanne, Matthew Pelton, and Markus B. Raschke, “Nano-Cavity QED with Tunable Nano-Tip Interaction,” Advanced Quantum Technology, 3, 190087 (2020).
402. M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. Andre, Le Si Dang, S. Kundermann, A Mura, G. Bongiovanni, J. L. Staehli and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature 414, 731 (2001).
403. S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nature Photonics 4, 371 (2010).
404. Hui Deng, Gregor Weihs, David Snoke, Jacqueline Bloch, and Yoshihisa Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” PNAS 23, 5318 (2003).
405. Yuanda Liu, Hanlin Fang, Abdullah Rasmita, Yu Zhou, Juntao Li, Ting Yu, Qihua Xiong, Nikolay Zheludev, Jin Liu, and Weibo Gao, “Room temperature nanocavity laser with interlayer excitons in 2D heterostructures,” Science Advances 5, eaav4506 (2019).
406. Johannes Flick, Nicholas Rivera and Prineha Narang, “Strong light-matter coupling in quantum chemistry and quantum photonics,” Nanophotonics 7, 1479 (2018).
407. J.A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T.W. Ebbesen, “Modifying chemical landscapes by coupling to vacuum fields,” Angew. Chem. Int. Ed. 51, 1592 (2012).
408. Joel Yuen-Zhou and Vinod M. Menon, “Polariton chemistry: Thinking inside the (photon) box,” PNAS 116, 5214 (2019).
409. Johannes Flick, Michael Ruggenthaler, Heiko Appel, and Angel Rubio “Atoms and Molecules in Cavities: From Weak to Strong Coupling in QED Chemistry,” Proceedings of The National Academy Of Sciences Of The United States Of America 114, 3026 (2017).
410. Christian Schäfer, Michael Ruggenthaler, Vasil Rokaj, and Angel Rubio, “Relevance of the quadratic diamagnetic and self-polarization terms in cavity quantum electrodynamics,” ACS Photonics 7, 975 (2020).
411. Daniele Sanvitto and Stéphane Kéna-Cohen, “The road towards polaritonic devices,” Nature Materials 15, 1061 (2016).
412. A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton-polariton spin switches,” Nature Photonics 4, 361 (2010).
413. T. Gao, P. Eldridge, T. Liew, S. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. Savvidis, “Polariton condensate transistor switch,” Physical Review B 85, 235102 (2012).
414. D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optiocal polariton transistor,” Nature Communications 4, 1778 (2013).
415. C. Antón, T. C. H. Liew, J. Cuadra, M. D. Martín, P. S. Eldridge, Z. Hatzopoulos, G. Stavrinidis, P. G. Savvidis, and L. Viña, “Quantum refelctions and shunting of polariton condensate wave trains: Implementation of a logic AND gate,” Physical Review B 88, 245307 (2013).
416. H. S. Nguyen, D. Vishnevsky, C. Sturm, D. Tanese, D. Solnyshkov, E. Galopin, A. Lemaître, I. Sagnes, A. Amo, G. Malpuech, and J. Bloch, “Realization of a Double-Barrier Resonant Tunneling Diode for Cavity Polaritons,” Physical Review Letters 110, 236601 (2013).
417. F. Marsault, H.S. Nguuyen, D. Tanese, A. Lemaitre, E. Galopin, I. Sagnes, A. Amo, and J. Bloch, “Realization of an all optical exciton-polariton router,” Applied Physical Letters 107, 201115 (2015).
418. A. Kavokin, T.C.H. Liew, C. Schneider, S. Hofling “Bosonic lasers” Low Temperature Physics 42, 323 (2016).
419. Dario Ballarini, Antonio Gianfrate, Riccardo Panico, Andrzej Opala, Sanjib Ghosh, Lorenzo Dominici, Vincenzo Ardizzone, Milena De Giorgi, Giovanni Lerario, Giuseppe Gigli, Timothy C. H. Liew, Michal Matuszewski, and Daniele Sanvitto, “Polaritonic Neuromorphic Computing Outperforms Linear Classifiers,” Nano Letters 20, 3506 (2020).
420. J. Gu, B. Chakraborty, M. Khatoniar and V.M. Menon, “A room-temperature polariton light-emitting diode based on monolayer WS2,” Nature Nanotechnology 14, 1024 (2019).
421. E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, “Polariton Condensation in Dynamic Acoustic Lattices,” Physical Review Letters 105, 116402 (2010).
422. Alberto Amo and Jacqueline Bloch, “Exciton-polaritons in lattices: A non-linear photonic simulator,” Comptes Rendus Physique 17, 934 (2016).
423. Long Zhang, Wei Xie, Jian Wang, Alexander Poddubny, Jian Lu, Yinglei Wang, Jie Gu, Wenhui Liu, Dan Xu, Xuechu Shen, Yuri G. Rubo, Boris L. Altshuler, Alexey V. Kavokin, and Zhanghai Chen, “Weak lasing in one-dimensional polariton superlattices,” PNAS 112, E1516 (2015).
424. M.J. Hartmann, F.G.S.L. Brandao, and M.B. Plenio, “Quantum many‐body phenomena in coupled cavity arrays,” Laser and Photonics 2, 6 (2008).
425. N. Y. Kim and Y. Yamamoto, “Exciton-Polariton Quantum Simulators in Quantum simulations with photons and polaritons,” 91, Ed. D. Angelakis, Springer (2017).
426. I. M. Georgescu, S. Ashhab and F. Nori, “Quantum simulation,” Reviews of Modern Physics 86, 153 (2014).
427. J. I. Cirac and P. Zoller, “Golas and opportunites in quantum simulation,” Nature Physics 8, 264 (2012).
428. I. Bloch, J. Dalibard, and S. Nascimbene, “Quantum simulations with ultracold quantum gases,” Nature Physics 8, 267 (2012).
429. N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nature Photonics 11, 447 (2017).
430. A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nature Physics 8, 285 (2012).
431. M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nature Physics 2, 849 (2006).
432. A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nature Physics 2, 856 (2006).
433. T. Byrnes, P. Recher, and Y. Yamamoto, “Mott transitions of excitons polaritons and indirect excitons in a periodic potential,” Physical Review B 81, 205312 (2010).
434. N. Na and Y. Yamamoto, “Massive parallel generation of indistinguishable single photons iva the polaritonic superfulid to Mott-insulator quantum phase transition,” New J. Phys. 12, 123001 (2010).
435. Natalia G. Berlo, Matteo Silva, Kirill Kalinin, Alexis Askitopoulos, Julian D. Töpfer, Pasquale Cilibrizzi, Wolfgang Langbein, and Pavlos G. Lagoudakis, “Realizing the classical XY Hamiltonian in polariton simulators,” Nature Materials 16, 1120 (2017).
436. T. Esslinger, “Fermi-Hubbard Physics with Atoms in an Optical Lattice,” Annual Review of Condensed Matter Physics 1, 129 (2010).
437. R. Blatt and C. F. Roos, “Quantum simulations with trapped ions,” Nature Physics 8, 277 (2012).
438. K. Kim, S. Korenblit, R. Islam, E. E. Edwards, M. S. Chang, C. Noh, H. Carmichael, G. D. Lin, L. M. Duan, C. C. J. Wang, J. K. Freericks, and C. Monroe, “Quantum simulation of the transverse Ising model with trapped ions,” New Journal of Physics 13, 105003 (2011).
439. J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. Joseph Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484, 489 (2012).
440. A. A. Houck, H. Tureci, and J. Koch, “On-chip quantum simulation with superconducting circuits,” Nature Physics 8, 292 (2012).
441. J. Koch, A. A. Houck, K. Le Hur, and S. M. Girvin, “Time-reversal-symmetry breaking in circuit-QED-based photon lattices,” Physical Review A 82, 043811 (2010).
442. L. Xiong, C. Forsythe, M. Jung, A.S. McLeod, S.S. Sunku, Y.M. Shao, G.X. Ni, A.J. Sternbach, S. Liu, J.H. Edgar, E.J. Mele, M.M. Fogler, G. Shvets, C.R. Dean, and D.N. Basov “Photonic crystal for graphene plasmons” Nature Communications 10, 4780 (2019).
443. Bor-Yuan Jiang, Guang-Xin Ni, Zachariah Addison, Jing K. Shi, Xiaomeng Liu, Shu Yang Frank Zhao, Philip Kim, Eugene J. Mele, D.N. Basov, and Michael M. Fogler, “Plasmon Reflections by Topological Electronic Boundaries in Bilayer Graphene,” Nano Letters 17, 7080 (2017).
444. Z. Fei, G. X. Ni, B. Y. Jiang, M. M. Fogler, and D. N. Basov, “Nanoplasmonic Phenomena at Electronic Boundaries in Graphene,” ACS Photonics 4, 12, 2971 (2017).
445. J. Chen, M.L. Nesterov, A.Y. Nikitin, S. Thongrattanasiri, P. Alonso-Gonzalez, T.M. Slipchenko, F. Speck, M. Ostler, T. Seyller, I. Crassee, F.H.L. Koppens, L. Martin-Moreno, F. J. Garcia de Abajo, J. Chen, A.B. Kuzmenko, and R. Hillenbrand, “Strong Plasmon Reflection at Nanometer-Size Gaps in Monolayer Graphene on SiC,” Nano Letters 13, 6210 (2013).
446. Eddwi H. Hasdeo and Justin C. W. Song, “Long-lived domain wall plasmons in gapped bilayer graphene,” Nano Letters, 17, 7252 (2017).
447. Rashid Zia and Mark L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nature Nanotechnology 2, 426 (2007).
448. Peining Li, Martin Lewin, Andrey V. Kretinin, Joshua D. Caldwell, Kostya S. Novoselov, Takashi Taniguchi, Kenji Watanabe, Fabian Gaussmann and Thomas Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nature Communications 7, 7507 (2015).
449. Chengliang Yang, Qiang Wu, Jingjun Xu, Keith A. Nelson, and Christopher A. Werley, “Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide,” Optics Express 18, 26351 (2010).
450. P. Peier, K.A. Nelson and T. Feurer, “Coherent phase contrast imaging of THz phonon–polariton tunneling,” Applied Physics B 99, 433 (2010).
451. Jiao Lin, Jean Dellinger, Patrice Genevet, Benoit Cluzel, Frederique de Fornel, and Federico Capasso, “Cosine-Gauss Plasmon Beam: A Localized Long-Range Nondiffracting Surface Wave,” Physical Review Letters 109, 093904 (2012).
452. Itai Epstein and Ady Arie, “Arbitrary Bending Plasmonic Light Waves,” Physical Review Letters 112, 023903 (2014).
453. Arthur R. Davoyan, Ilya V. Shadrivov, and Yuri S. Kivshar, “Self-focusing and spatial plasmon-polariton solitons,” Optics Express 17, 21732 (2009).
454. Jesper Levinsen, Guangyao Li, and Meera M. Parish, “Microscopic description of exciton-polaritons in microcavities,” Physical Review Research 1, 033120 (2019).
455. L. Nguyen-thˆe, S. De Liberato, M. Bamba, and C. Ciuti, “Effective polariton- polariton interactions of cavity-embedded two-dimensional electron gases,” Physical Review B 87, 235322 (2013).
456. Yongbao Sun Yoseob Yoon, Mark Steger, Gangqiang Liu, Loren N. Pfeier, Ken West, David W. Snoke and Keith A. Nelson, “Direct measurement of polariton–polariton interaction strength,” Nature Physics 13, 870 (2017).
457. E. Estrecho, T. Gao, N. Bobrovska, D. Comber-Todd, M. D. Fraser, M. Steger, K. West, L. N. Pfeiffer, J. Levinsen, M. M. Parish, T. C. H. Liew, M. Matuszewski, D. W. Snoke, A. G. Truscott, and E. A. Ostrovskaya, “Direct measurement of polariton-polariton interaction strength in the Thomas-Fermi regime of exciton-polariton condensation,” Physical Review B 035306 (2019).
458. Xiao Lina, Yi Yangc, Nicholas Riverab, Josué J. Lópezc, Yichen Shenb, Ido Kaminerb, Hongsheng Chena, Baile Zhange, John D. Joannopoulos, and Marin Soljaˇ ci, “All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene–boron nitride heterostructures,” PNAS 114, 6717 (2017).
459. Kundan Chaudhary, Michele Tamagnone, Xinghui Yin, Christina M. Spägele, Stefano L. Oscurato, Jiahan Li, Christoph Persch, Ruoping Li, Noah A. Rubin, Luis A. Jauregui, Kenji Watanabe, Takashi Taniguchi, Philip Kim, Matthias Wuttig, James H. Edgar, Antonio Ambrosio and Federico Capasso, “Polariton nanophotonics using phase-change materials,” Nature Communications 10, 4487 (2019).
460. P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344, 1369 (2014).
461. M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, and A. Imamoglu, “Fermi Polaron-Polaritons in Charge-Tunable Atomically Thin Semiconductors,” Nature Physics 13, 255 (2017).
462. D. K. Efimkin and A. H. MacDonald, “Many-Body Theory of Trion Absorption Features in Two-Dimensional Semiconductors,” Physical Review B 95, 035417 (2017).
463. G. Scalari, C. Maissen, D. Turcinkova, D. Hagenmuller, S.De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335, 1323 (2012).
464. F.M.D. Pellegrino, V. Giocannetti, A.H. MacDonald, and M. Polini, “Modulated phases of graphene quantum Hall polariton fluids,” Nature Communications 7, 13355 (2016).
465. I. Neder, N. Ofek, Y. Chung, M. Heiblum, D. Mahalu, and V. Umansky, “Interference between two indistinguishable electrons from independent sources,” Nature (London) 448, 333 (2007).
466. C. B ̈auerle, D.C. Glattli, T. Meunier, F. Portier, P. Roche, P. Roulleau, S. Takada, X. Waintal, “Coherent control of single electrons: a review of current progress,” Rep. Prog. Phys. 81, 056503 (2018).
467. J. Splettstoesser and R.J. Haug, “Single-electron control in solid state devices,” Phys. Status Solidi B254, 1770217 (2017).
468. D.C. Glattli, and P.S. Roulleau, “Levitons for electron quantum optics,” Phys. Status Solidi B254, 1600650 (2016).
469. S. Smolka, W. Wuester, F. Haupt, S. Faelt, W. Wegscheider, and A. Imamoglu, “Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas,” Science 346, 332 (2014).
470. P. Knuppel, S. Ravets, M. Kroner, S. Falt, W. Wegscheider, and A. Imamoglu, “Nonlinear optics in the fractional quantum Hall regime,” Nature 572, 91 (2019).
471. Li Bing Tan, Ovidiu Cotlet, Andrea Bergschneider, Richard Schmidt, Patrick Back, Yuya Shimazaki, Martin Kroner, and Ataç İmamoğlu, “Interacting Polaron-Polaritons,” Physical Review X 10, 021011 (2020).
472. Maksym Sich, Lucy E. Tapia-Rodriguez, Helgi Sigurdsson, Paul M. Walker, Edmund Clarke, Ivan A. Shelykh, Benjamin Royall, Evgeny S. Sedov, Alexey V. Kavokin, Dmitry V. Skryabin, Maurice S. Skolnick, and Dmitry N. Krizhanovskii, “Spin Domains in One-Dimensional Conservative Polariton Solitons,” ACS Photonics 5, 5095 (2018).
473. M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J.I. Cirac, and P. Zoller, “Dipole Blockade and Quantum Information Processing in Mesoscopic Atomic Ensembles,” Physical Review Letters 87, 037901 (2001).
474. D. Comparat and P. Pillet, “Dipole blockade in a cold Rydberg atomic sample,” J. Opt. Soc. Am. B 27, A208 (2010).
475. A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and M. D. Lukin, “Photon-Photon Interactions via Rydberg Blockade,” Physical Review Letters 107, 133602 (2011).
476. E. Shahmoon, G. Kurizki, M. Fleischhauer, and D. Petrosyan, “Strongly interacting photons in hollow-core waveguides,” Physical Review A 83, 033806 (2011).
477. Thibault Peyronel, Ofer Firstenberg, Qi-Yu Liang, Sebastian Hofferberth, Alexey V. Gorshkov, Thomas Pohl, Mikhail D. Lukin and Vladan Vuletic, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488, 57 (2012).
478. A. Chernikov, T.C. Berkelbach, H.M. Hill, A. Rigosi, Y. Li, O. Burak Aslan, D.R. Reichman, M.S. Hybertsen, and T.F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Physical Review Letters 113, 076802 (2014).
479. P. Merkl, F. Mooshammer, S. Brem, A. Girnghuber, K.-Q. Lin, L. Weigl, M. Liebich, C.-K. Yong, R. Gillen, J. Maultzsch, J.M. Lupton, E. Malic and R. Huber, “Twist-tailoring Coulomb correlations in van der Waals homobilayers,” Nature Communications 11, 2167 (2020).
480. W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in Polyacetylene,” Physical Review Letters 42, 1698 (1979).
481. P. St-Jean, V. Goblot, E. Galopin, A. Lemaître, T. Ozawa, L. Le Gratiet, I. Sagnes, J. Bloch and A. Amo, “Lasing in topological edge states of a one-dimensional lattice,” Nature Photonics 11, 651 (2017).
482. M. Bello, G. Platero, J. I. Cirac, and A. González-Tudela Bello, “Unconventional quantum optics in topological waveguide QED,” Science Advances 5, eaaw0297 (2019).
483. C.A. Downing, T.J. Sturges, G. Weick, M. Stobinska, and L. Martin-Moreno, “Topological Phases of Polaritons in a Cavity Waveguide,” Physical Review Letters 123, 217401 (2019).
484. Aniruddha Bhattacharya, Md Zunaid Baten, Ivan Iorsh, Thomas Frost, Alexey Kavokin, and Pallab Bhattacharya, “Room-Temperature Spin Polariton Diode Laser,” Physical Review Letters 119, 067701 (2017).
485. Amit Agarwal, Marco Polini, Giovanni Vignale, and Michael E. Flatt, “Long-lived spin plasmons in a spin-polarized two-dimensional electron gas,” Physical Review B 90, 155409 (2014).
486. L. I. Magarill, A. V. Chaplik, and M. V. Éntin, “Spin-Plasmon Oscillations of the Two-Dimensional Electron Gas,” Journal of Experimental and Theoretical Physics 92, 153(2001)
487. S. Raghu, S. Bum Chung, X.L. Qi, and S.-C. Zhang, “Collective Modes of a Helical Liquid,” Physical Review Letters 104, 116401 (2010).
488. J.B. Pendry, D. Schurig, and D.R. Smith,”Controlling Electromagnetic Electromagnetic Fields”. Science 312, 1780 (2006).
489. Ulf Leonhardt, “Optical Conformal Mapping”. Science. 312, 1777 (2006).
490. Paloma A. Huidobro, Maxim L. Nesterov, Luis Martın-Moreno, and Francisco J. Garcıa, “Vidal Transformation Optics for Plasmonics,” Nano Letters 10, 1985 (2010).
491. V. Ginis, P. Tassin, J. Danckaert, C.M. Soukoulis and I. Veretennicoff, “Creating electromagnetic cavities using transformation optics,” New Journal of Physics 14, 033007(2012)
492. Ashkan Vakil and Nader Engheta, “Transformation Optics Using Graphene,” Science 332, 1291 (2011).
493. I. Tamm, “Über eine mögliche Art der Elektronenbindung an Kristalloberflächen,” Z. Physik 76, 849 (1932).
494. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Physical Review B 76, 165415 (2007).
495. Bin Liu, Rong Wu, and Vinod M. Menon, “Propagating Hybrid Tamm Exciton Polaritons in Organic Microcavity,” J. Phys. Chem. C, 123, 43, 26509 (2019).
496. S. Dhara, C. Chakraborty, K.M. Goodfellow, L. Qiu, T.A. O’Loughlin, G.W. Wicks, S. Bhattacharjee, and A.N. Vamivakas, “Anomalous Dispersion of Microcavity Trion-Polaritons,” Nature Physics 14, 130 (2017).
497. R. P. A. Emmanuele, M. Sich, O. Kyriienko, V. Shahnazaryan, F. Withers, A. Catanzaro, P. M. Walker, F. A. Benimetskiy, M. S. Skolnick, A. I. Tartakovskii, I. A. Shelykh and D. N. Krizhanovskii, “Highly nonlinear trion-polaritons in a monolayer semiconductor,” Nature Communications 11, 3589 (2020).
498. Charles Möhl, Arko Graf, Felix J. Berger, Jan Lüttgens, Yuriy Zakharko, Victoria Lumsargis, Malte C. Gather, and Jana Zaumseil, “Trion-Polariton Formation in Single-Walled Carbon Nanotube Microcavities,” ACS Photonics 5, 2074 (2018).
499. Sandra de Vega† and F. Javier García de Abajo, “Plasmon Generation through Electron Tunneling in Graphene,” ACS Photonics 4, 2367 (2017).
500. Achim Woessner, Abhishek Misra, Yang Cao, Iacopo Torre, Artem Mishchenko, Mark B. Lundeberg, Kenji Watanabe, Takashi Taniguchi, Marco Polini, Kostya S. Novoselov, and Frank H. L. Koppens, “Propagating Plasmons in a Charge-Neutral Quantum Tunneling Transistor,” ACS Photonics 4, 3012 (2017).
501. X. Xu, W. Yao, D. Xiao, T. and Heinz, “T. Spin and pseudospins in layered transition metal dichalcogenides,” Nature Physics 10, 343 (2014).
502. Ruoming Peng, Changming Wu, Huan Li, Xiaodong Xu, and Mo Li, “Separation of the valley exciton-polariton in two-dimensional semiconductors with an anisotropic photonic crystal,” Physical Review B 101, 245418 (2020).
503. S. Guddala, R. Bushati, M. Li, A. B. Khanikaev, and V. M. Menon, “Valley selective optical control of excitons in 2D semiconductors using a chiral metasurface,” Optical Materials Express 9, 536 (2019).
504. I. Egri and A. Stahl, “Real space wave equation for exciton-polaritons pf wannier type,” Phys. Stat. Sol. (b) 96, K83 (1979).
505. Giuseppe Calaj´o, Francesco Ciccarello, Darrick Chang, and Peter Rabl, “Atom-field dressed states in slow-light waveguide QED,” Physical Review A 93, 033833 (2016).
506. Benjamin K Ofori-Okai, Prasahnt Sivarajah, Christopher A Werley, Stephanie M Teo and Keith A. Nelson, “Direct experimental visualization of waves and band structure in 2D photonic crystal slabs,” New Journal of Physics 16, 053003 (2014).
507. Ana Asenjo-Garcia, J.D. Hood, D.E. Chang, and H.J. Kimble, “Atom-light interactions in quasi-one-dimensional nanostructures: A Green’s-function perspective,” Physical Review A 95, 033818 (2017).
508. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface cre- ated by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Physical Review Letters 104, 203603 (2010).
509. A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kim- ble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Physical Review Letters 109, 033603 (2012).
510. A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Physical Review Letters 115, 063601 (2015).
511. J. D. Hood, A. Goban, A. Asenjo-Garcia, M. Lu, S.-P. Yu, D. E. Chang, and H. J. Kimble, “Atom–atom interac- tions around the band edge of a photonic crystal waveguide,” Proc. Natl. Acad. Sci. USA 113, 10507 (2016).
512. M. Mirhosseini, E. Kim, X. Zhang, A. Sipahigil, P.B. Dieterle, A.J. Keller, A. Asenjo-Garcia, D.E. Chang, and O. Painter, “Cavity quantum electrodynamics with atom-like mirrors,” Nature 569, 692 (2019).
513. Y. Liu and A.A. Houck, “Quantum electrodynamics near a photonic bandgap,” Nature Physics 13, 48 (2017).
514. T. Shi, Y.-H. Wu, A. González-Tudela, and J. I. Cirac, “Bound states in boson impurity models,” Physical Review X 6, 021027 (2016).
515. J. Zenneck, “Fortplfanzung ebener elektromagnetischer Wellenlängs einer ebenen Leiterfläche,” Ann. Phys. 328, 846 (1907).
516. K.A. Norton, “Propagation of radio waves over the surface of the earth and in the upper atmosphere,” Proc. IRE 24, 1367 (1936).
517. A. Sommerfeld, “Uber die Ausbreitung der Wellen in derdrahtlosen Telegraphie,” Ann. Phys. 333, 665 (1909).
518. Michaël Sarrazin and Jean-Pol Vigneron, “Light transmission assisted by Brewster-Zennek modes in chromium films carrying a subwavelength hole array,” Physical Review B 71, 075404 (2005).
519. A. Shivola, J. Qi, and I.V. Lindell, “Bridging the Gap Between Plasmonics and Zenneck Waves,” IEEE Antennas and Propagation Magazine 52, 124 (2010).
520. K.A. Michalski and J.R. Mosig, “The Sommerfeld Halfspace Problem Redux: Alternative Field Representations, Role of Zenneck and Surface Plasmon Waves,” IEEE Transactions on Antennas and Propagation 63, (2015).
521. A Yu Nikitin, Sergio G Rodrigo, F J García-Vidal and L Martín-Moreno, “In the diffraction shadow: Norton waves versus surface plasmon polaritons in the optical region,” New Journal of Physics 11, 123020 (2009).
522. Viktoriia E. Babicheva, Sampath Gamage, Li Zhen, Stephen B. Cronin, Vladislav S. Yakovlev, and Yohannes Abate, “Near-Field Surface Waves in Few-Layer MoS2,” ACS Photonics 5, 2106 (2018).