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We present infrared magneto-optical measurements of the c-axis conductivity of YBa,Cu30, in both
the underdoped (y = 6.67 and 6.75) and optimally doped (y = 6.95) regimes. We show that modest c-axis
magnetic fields radically modify the condensate formation and restore conventional BCS-like energetics.
Additionally, we demonstrate the pivotal role of interplane coherence in the anomalous high-energy

contribution to the superfluid density.
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The theory of Bardeen, Cooper, and Schreiffer (BCS),
undisputed for metallic superconductors, dictates that the
transition involves a narrow interval of energies on the
order of kgT.. Arguably, the most significant departure
from the BCS scheme in high-7',. cuprate superconductors
is revealed by optical studies [1,2], which indicate that
electronic processes occurring on the energy scale
(10-10%)kgT, are often involved in the formation of the
superconducting condensate [2—9]. These high-frequency
optical effects can be interpreted in terms of electronic
kinetic energy savings at 7 <T, [10,11], at odds with
predictions of the BCS theory.

The infrared (IR) optics technique offers an unparalleled
window into the formation of the condensate in super-
conductors due to a well-known relationship between the
integral of the real part of the complex optical conductivity
6(w) = 0,(w) + io,(w) and the electronic Kinetic energy
K, in the direction r [10-13],

2h

Here a, is the lattice spacing in the r direction. The
conductivity of a superconductor at 7 < 7T, has two con-
tributions: o-?f(w) = p;06(w) + o 5(w), where the first
term accounts for the response of the condensate and the
second stands for the response of charges not participating
in the pairing. Low-frequency spectral weight lost across
the transition is transferred to the superfluid density p,, =
me’n,/2m, where n, is the superconducting carrier den-
sity and m; is the pair effective mass. Provided changes of
K, are small, the conductivity follows the Ferrel-Glover-
Tinkham sum rule [14]:
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N denotes the normal state, and the cutoff () is usually
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comparable to few energy gap values. In many cuprates,
however, the suppression of the conductivity in this fre-
quency range is insufficient to fully account for the super-
fluid density [2—9]. The Hirsch kinetic energy sum rule
[10] then allows one to interpret this additional contribu-
tion as a lowering of the electronic kinetic energy:

pur = [ dolot@) ~ oK@ + MK O

An experimental survey of the energy scales associated
with the superconducting condensate requires a perturba-
tion that destroys or suppresses superconductivity, such as
temperature, doping, and/or magnetic field. The former
two approaches are easily achieved but may lead to arti-
facts in the analysis since they impact multiple coexisting
interactions, thus obscuring processes directly related to
the condensate formation [15]. The magnetic field com-
petes with superconductivity without introducing disorder;
therefore, magneto-optical experiments are uniquely suited
for exploring the condensate formation without signifi-
cantly altering other properties.

Here, we use IR magneto-optical reflectance measure-
ments to characterize the interplane electrodynamics
across the phase diagram of YBa,Cu30,, a prototypical
high-T,. cuprate. We focused on the interplane (c-axis)
response, where the condensate formation anomalies are
most prominent. Doping trends seen in the c-axis ener-
getics mirror in-plane results [2—4,6—8], supporting the
notion that it is the same phenomenon which is probed in
two different polarizations of IR experiments [16]. Our
experiments show that high-energy contributions to the
c-axis superfluid density in underdoped YBCO are elimi-
nated with the application of modest magnetic fields, sug-
gesting that kinetic energy lowering is not essential to
high-temperature superconductivity.

© 2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.101.097008

PRL 101, 097008 (2008)

PHYSICAL REVIEW LETTERS

week ending
29 AUGUST 2008

Very clean YBCO single crystals studied in this work
were grown in pure Y,0O; crucibles using a flux method
[17]. They were annealed to oxygen dopings of y = 6.67,
6.75, and 6.95, leading to sharp superconducting transi-
tions at temperatures 7, = 60, 65, and 93 K, respec-
tively [18]. c-axis polarized magnetoreflectance measure-
ments were performed over a broad range of frequency
(18-35000 cm™') and magnetic field (0—8 T) and are
described in greater detail in Refs. [19,20]. Reflectance
data with appropriate extrapolations were transformed us-
ing the Kramers-Kronig relations to obtain the optical
conductivity 6(w). Figures 1(a)—1(c) show the real part
o (w). At optimal doping [Fig. 1(c)] the optical conduc-
tivity at 7, is flat in the far IR, followed by a series of
optically active phonons from 100-700 cm™'. As tempera-
ture is lowered below T, far-IR conductivity levels drop
and spectral weight (SW) is transferred into the super-
conducting & peak at w = 0. In underdoped samples
[Figs. 1(a) and 1(b)], however, the suppression of the far-
IR conductivity begins in the pseudogap state at 7 above T

and is accompanied by transfer of spectral weight at mid-
IR frequencies [21]. The asymmetrical mode near
450 cm™! [22,23], which is already visible in the pseudo-
gap state, grows dramatically below T.. All these findings
are consistent with earlier systematic studies of YBCO
[24-26].

The dominant effects of the c-axis magnetic field H on
the 8 K conductivity of both underdoped samples
[Figs. 1(a) and 1(b)] are the simultaneous softening or
weakening of the asymmetric mode near 450 cm™! and
the growth of the high-frequency tail of the phonon at
320 cm~!. In the optimally doped sample, background
conductivity levels increase with field, and the resonance
at 800 cm ™! is suppressed.

Next we present, in Figs. 1(d)-1(f) and 2, the key ex-
perimental results of this work revealing the field-induced
redistribution of the electronic spectral weight in the con-
ductivity. It is instructive to introduce the integral spec-
tral function ANy (w, H) = [¢. do'[o(0', T, 0 T) —
o, (w', 8 K, H)] quantifying the spectral weight transferred
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FIG. 1 (color online).

Frequency (cm™)

Condensate formation revealed by IR magneto-optics for YBa,Cu;0, crystals with oxygen content y = 6.67

(top), y = 6.75 (middle), and y = 6.95 (bottom). Magnetic field is oriented parallel to the ¢ axis. Left panels: Optical conductivity at
T = 8 K in magnetic field (solid curves) and at 7. (dashed curves). Right panels: Difference in integrated SW between normal (7T >
T.) and superconducting state ANy (w, H) = [¢ dw'[oy(«', T, 0 T) — 0(«’, 8 K, H)]. Line legend is common for all panels.
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to the 6(w) peak from the frequency region confined to .
Values of p; [calculated from o, (w) [27]] are plotted for 0
and 8 T on the right-hand axes of the main panels of Fig. 1
in the same units as the SW change, and they appear for all
fields and dopings in Fig. 2. Figure 2 also displays the
values of ANy (€.) for H = 0-8 T. We used cutoff fre-
quencies Q. = 1000 cm™! for underdoped samples and
1300 cm ™! for the optimally doped crystal because field-
induced changes of raw reflectance become negligibly
small beyond these values. Lastly, we have identified the
difference between p, and AN (.) as the high-
frequency contribution to the superconducting condensate.
This term is labeled as AK, to underscore the proposed
link to the kinetic energy change.

Proceeding with discussion of the field-induced redis-
tribution of the electronic SW, we will consider first the
y = 6.67 crystal. The data in Fig. 1(d) show that at H = 0
(black curves) the background level of AN (w) increases
with frequency, with changes to phonons and the asym-
metrical mode appearing as sharp features. Importantly,
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FIG. 2 (color online). Comparison of spectral weight redistrib-
ution in c-axis magnetic field for YBa,Cu;0, at y = 6.67 (top
panel), 6.75 (middle), and 6.95 (bottom) doping levels. Red
circles represent the value of ANy (€., H) at cutoff frequencies
Q,=1000 cm™!' for the underdoped crystals and ), =
1300 cm™! for the optimally doped system. Blue triangles
indicate total superfluid density at each value of magnetic field.
High-energy contributions (shaded regions) were inferred from
ps — ANz (., H) and can be interpreted as kinetic energy
change AK, via Ref. [10].

ANr (€,) is nearly unchanged for H || c. The asymmet-
rical mode and the 320 cm ™! phonon in the conductivity
are significantly modified by field, but the majority of the
SW transfer takes place between these two features, con-
serving the finite-frequency SW in the far-IR region.
Figure 2 illustrates trends in the field dependence of
AN7 () and pg; the latter is suppressed by about 50%
at the highest field in both underdoped samples. At zero
field the finite-frequency SW lost below (). only consti-
tutes half of that gained by the superconducting conden-
sate, implying that the remaining portion of the condensate
must be transferred from higher energies. As magnetic
field is applied we see in greater detail the effect apparent
in Fig. 1: ANy (Q,) is roughly constant, while p is sup-
pressed nearly linearly with H. Thus, the shrinking shaded
regions in Fig. 2 represent the waning contribution of
higher-energy SW to the condensate. This result is signifi-
cant since, in view of Eq. (3), it implies that the energetics
of the superconducting transition are dramatically modi-
fied by magnetic field.

Continuation of this analysis across the phase diagram
reveals other interesting trends. Features of the H || ¢ data
for the second underdoped sample (y = 6.75) are generally
similar to those discussed for y = 6.67, but data for the
optimally doped crystal, shown in Fig. 2 (bottom), exhibit
important differences. First, there is no high-energy con-
tribution to the condensate observed at zero field:
ANz (2.)/py = 1 with high accuracy. Second, this condi-
tion is maintained up to the highest measured fields, as
changes in p, consistently match those in ANz, (€2,.). Thus,
at optimal doping the superconducting transition involves
no high-energy transfer of spectral weight.

In light of the introductory comments on the energetics
of condensate formation, it is clear that the magneto-optics
data presented in Figs. 1 and 2 for H || ¢ seriously under-
mine the notion of kinetic-energy-driven superconductiv-
ity. We see that the high-energy contribution to the conden-
sate, which can be interpreted in terms of kinetic energy
change in underdoped samples, is mostly eliminated by 5—
8 T. This evidence for a robust superconducting state in the
absence of a substantial kinetic energy change weakens the
case for this type of condensation mechanism. Further-
more, effects attributable to kinetic energy change never
appear at optimal doping.

Remarkably, the conventional condensation scheme has
been restored in underdoped samples via field-induced
modification of processes occurring at energies exceeding
the energy scale of the magnetic field by several orders of
magnitude. Equally surprising is the giant (50%) depres-
sion of the superfluid density observed in underdoped
samples despite the fact that the maximum field in our
experiments is much smaller than the pair-breaking field
[28,29]. We propose that both effects share a common
origin related to the interlayer phase coherence. First,
note that pancake vortices initiated by the H || ¢ field are
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likely to be misaligned in the ¢ direction due to pinning
[30]. This vortex meandering is known to introduce a phase
difference ¢, ,+1(r) between neighboring layers [31,32].
An immediate consequence is that the average strength of
the interlayer Josephson coupling J « Jycos(¢,, ,+1) is
reduced, leading to suppression of the c-axis superfluid
density governed by J. The finite interplane phase differ-
ence in the vortex state is of direct relevance to a scenario
for a contribution to p, originating from energies much
larger than kzT,. proposed by loffe, Millis, and Shah (IMS)
[33,34]. According to these calculations the high-energy
contribution is indeed expected, provided the supercon-
ducting transition occurs from a state where pairing already
exists but phase coherence between the planes is still
missing and is only established below T.. Importantly,
vortex meandering is in direct competition with the resto-
ration of interlayer phase coherence. Extending this argu-
ment to the IMS picture one can conclude that the above
competition reduces and eventually eliminates the high-
energy contribution to the & peak, in accordance with our
findings. It is important to note that these theoretical results
in Refs. [34,35] are sensitive to the details of the bilayer
coupling [34], and that a different behavior may be ex-
pected for single-layer cuprate compounds. The central
role of phase fluctutation is underscored by the fact that
these enigmatic field-induced effects are observed only in
the underdoped region of the phase diagram, where accu-
rate terahertz experiments [35] and Nernst measurements
[36] have established superconducting pairing above 7.

In summary, our data demonstrate that relatively small
magnetic fields can modify spectral weight redistribution
in a prototypical family of cuprate superconductors over an
anomalously large energy scale. Fields H || ¢ of 8 T sup-
press the high-frequency contribution to the zero-w 8(w)
peak but do not completely destroy the superfluid density,
leaving a robust superconducting state. These findings
point toward a more BCS-like formation of the supercon-
ducting condensate even in underdoped samples where
earlier zero-field data pointed to a highly exotic condensa-
tion process. The large energy scale of the associated
electronic processes then seems to be a generic property
of correlated electron systems, but only peripherally re-
lated to superconductivity. Furthermore, we have proposed
a scenario in which the changes in spectral weight redis-
tribution are linked to a reduction in phase coherence in the
superconducting state, primarily due to vortex meandering.
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